Backtracking
Java solutions with explanations, time and space complexity for Backtracking problems.
Backtracking Pattern
Backtracking is an algorithmic technique that considers searching every possible combination in order to solve a computational problem. It’s particularly useful for:
- Generating all possible combinations/permutations
- Solving constraint satisfaction problems
- Finding all possible solutions
- Path finding in mazes/grids
- Game solving (like N-Queens)
1. Subsets (Medium)
Problem: Given an integer array nums of unique elements, return all possible subsets (the power set). The solution set must not contain duplicate subsets.
Solution:
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
backtrack(result, new ArrayList<>(), nums, 0);
return result;
}
private void backtrack(List<List<Integer>> result, List<Integer> temp, int[] nums, int start) {
result.add(new ArrayList<>(temp));
for (int i = start; i < nums.length; i++) {
temp.add(nums[i]);
backtrack(result, temp, nums, i + 1);
temp.remove(temp.size() - 1);
}
}
}
Time Complexity: O(n * 2^n) where n is the length of nums Space Complexity: O(n) for recursion stack
2. Combination Sum (Medium)
Problem: Given an array of distinct integers candidates and a target integer target, return a list of all unique combinations of candidates where the chosen numbers sum to target.
Solution:
class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
backtrack(result, new ArrayList<>(), candidates, target, 0);
return result;
}
private void backtrack(List<List<Integer>> result, List<Integer> temp,
int[] candidates, int remain, int start) {
if (remain < 0) return;
if (remain == 0) {
result.add(new ArrayList<>(temp));
return;
}
for (int i = start; i < candidates.length; i++) {
temp.add(candidates[i]);
backtrack(result, temp, candidates, remain - candidates[i], i);
temp.remove(temp.size() - 1);
}
}
}
Time Complexity: O(n^(target/min)) where n is the length of candidates Space Complexity: O(target/min) for recursion stack
3. Permutations (Medium)
Problem: Given an array nums of distinct integers, return all the possible permutations.
Solution:
class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
backtrack(result, new ArrayList<>(), nums);
return result;
}
private void backtrack(List<List<Integer>> result, List<Integer> temp, int[] nums) {
if (temp.size() == nums.length) {
result.add(new ArrayList<>(temp));
return;
}
for (int i = 0; i < nums.length; i++) {
if (temp.contains(nums[i])) continue;
temp.add(nums[i]);
backtrack(result, temp, nums);
temp.remove(temp.size() - 1);
}
}
}
Time Complexity: O(n!) where n is the length of nums Space Complexity: O(n) for recursion stack
4. Subsets II (Medium)
Problem: Given an integer array nums that may contain duplicates, return all possible subsets (the power set).
Solution:
class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
Arrays.sort(nums);
backtrack(result, new ArrayList<>(), nums, 0);
return result;
}
private void backtrack(List<List<Integer>> result, List<Integer> temp,
int[] nums, int start) {
result.add(new ArrayList<>(temp));
for (int i = start; i < nums.length; i++) {
if (i > start && nums[i] == nums[i-1]) continue;
temp.add(nums[i]);
backtrack(result, temp, nums, i + 1);
temp.remove(temp.size() - 1);
}
}
}
Time Complexity: O(n * 2^n) where n is the length of nums Space Complexity: O(n) for recursion stack
5. Combination Sum II (Medium)
Problem: Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sum to target.
Solution:
class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> result = new ArrayList<>();
Arrays.sort(candidates);
backtrack(result, new ArrayList<>(), candidates, target, 0);
return result;
}
private void backtrack(List<List<Integer>> result, List<Integer> temp,
int[] candidates, int remain, int start) {
if (remain < 0) return;
if (remain == 0) {
result.add(new ArrayList<>(temp));
return;
}
for (int i = start; i < candidates.length; i++) {
if (i > start && candidates[i] == candidates[i-1]) continue;
temp.add(candidates[i]);
backtrack(result, temp, candidates, remain - candidates[i], i + 1);
temp.remove(temp.size() - 1);
}
}
}
Time Complexity: O(2^n) where n is the length of candidates Space Complexity: O(n) for recursion stack
6. Word Search (Medium)
Problem: Given an m x n grid of characters board and a string word, return true if word exists in the grid.
Solution:
class Solution {
public boolean exist(char[][] board, String word) {
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
if (backtrack(board, word, 0, i, j)) {
return true;
}
}
}
return false;
}
private boolean backtrack(char[][] board, String word, int index, int i, int j) {
if (index == word.length()) return true;
if (i < 0 || i >= board.length || j < 0 || j >= board[0].length
|| board[i][j] != word.charAt(index)) {
return false;
}
char temp = board[i][j];
board[i][j] = '#';
boolean found = backtrack(board, word, index + 1, i + 1, j) ||
backtrack(board, word, index + 1, i - 1, j) ||
backtrack(board, word, index + 1, i, j + 1) ||
backtrack(board, word, index + 1, i, j - 1);
board[i][j] = temp;
return found;
}
}
Time Complexity: O(m * n * 4^L) where m,n are dimensions and L is word length Space Complexity: O(L) for recursion stack
7. Palindrome Partitioning (Medium)
Problem: Given a string s, partition s such that every substring of the partition is a palindrome.
Solution:
class Solution {
public List<List<String>> partition(String s) {
List<List<String>> result = new ArrayList<>();
backtrack(result, new ArrayList<>(), s, 0);
return result;
}
private void backtrack(List<List<String>> result, List<String> temp,
String s, int start) {
if (start == s.length()) {
result.add(new ArrayList<>(temp));
return;
}
for (int i = start; i < s.length(); i++) {
if (isPalindrome(s, start, i)) {
temp.add(s.substring(start, i + 1));
backtrack(result, temp, s, i + 1);
temp.remove(temp.size() - 1);
}
}
}
private boolean isPalindrome(String s, int left, int right) {
while (left < right) {
if (s.charAt(left++) != s.charAt(right--)) {
return false;
}
}
return true;
}
}
Time Complexity: O(n * 2^n) where n is the length of s Space Complexity: O(n) for recursion stack
8. Letter Combinations of a Phone Number (Medium)
Problem: Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent.
Solution:
class Solution {
private String[] mapping = {"", "", "abc", "def", "ghi", "jkl",
"mno", "pqrs", "tuv", "wxyz"};
public List<String> letterCombinations(String digits) {
List<String> result = new ArrayList<>();
if (digits.length() == 0) return result;
backtrack(result, new StringBuilder(), digits, 0);
return result;
}
private void backtrack(List<String> result, StringBuilder temp,
String digits, int index) {
if (index == digits.length()) {
result.add(temp.toString());
return;
}
String letters = mapping[digits.charAt(index) - '0'];
for (char c : letters.toCharArray()) {
temp.append(c);
backtrack(result, temp, digits, index + 1);
temp.deleteCharAt(temp.length() - 1);
}
}
}
Time Complexity: O(4^n) where n is the length of digits Space Complexity: O(n) for recursion stack
9. N Queens (Hard)
Problem: The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.
Solution:
class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> result = new ArrayList<>();
char[][] board = new char[n][n];
for (char[] row : board) {
Arrays.fill(row, '.');
}
backtrack(result, board, 0);
return result;
}
private void backtrack(List<List<String>> result, char[][] board, int row) {
if (row == board.length) {
result.add(constructBoard(board));
return;
}
for (int col = 0; col < board.length; col++) {
if (isValid(board, row, col)) {
board[row][col] = 'Q';
backtrack(result, board, row + 1);
board[row][col] = '.';
}
}
}
private boolean isValid(char[][] board, int row, int col) {
// Check column
for (int i = 0; i < row; i++) {
if (board[i][col] == 'Q') return false;
}
// Check diagonal
for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
if (board[i][j] == 'Q') return false;
}
// Check anti-diagonal
for (int i = row - 1, j = col + 1; i >= 0 && j < board.length; i--, j++) {
if (board[i][j] == 'Q') return false;
}
return true;
}
private List<String> constructBoard(char[][] board) {
List<String> result = new ArrayList<>();
for (char[] row : board) {
result.add(new String(row));
}
return result;
}
}
Time Complexity: O(n!) where n is the board size Space Complexity: O(n) for recursion stack
Key Takeaways
-
Backtracking is perfect for:
- Generating all possible combinations/permutations
- Solving constraint satisfaction problems
- Finding all possible solutions
- Path finding in mazes/grids
- Game solving
-
Common patterns:
- Choose-explore-unchoose pattern
- State management
- Pruning invalid paths
- Base case handling
- Path restoration
-
Tips:
- Always consider the state space
- Use pruning to reduce search space
- Maintain state consistency
- Consider using visited sets for cycles
- Think about the order of operations