import HeaderLink from './HeaderLink.astro';

Advanced Anomaly Detection System

Enterprise-grade anomaly detection system using deep learning, statistical methods, and real-time processing for multivariate time series data

System Architecture

A comprehensive anomaly detection system that combines multiple detection strategies with real-time processing and automated response capabilities.

Core Components

1. Deep Learning Detector

class DeepAnomalyDetector:
    def __init__(self, config: Dict[str, Any]):
        self.model = VariationalAutoencoder(
            input_dim=config['input_dim'],
            latent_dim=config['latent_dim'],
            hidden_layers=config['hidden_layers']
        )
        self.threshold = self._compute_dynamic_threshold()
        self.scaler = RobustScaler()
        
    def detect(self, data: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        scaled_data = self.scaler.transform(data)
        reconstructed = self.model(scaled_data)
        reconstruction_error = np.mean(
            np.square(scaled_data - reconstructed),
            axis=1
        )
        return reconstruction_error > self.threshold, reconstruction_error

class VariationalAutoencoder(nn.Module):
    def __init__(
        self,
        input_dim: int,
        latent_dim: int,
        hidden_layers: List[int]
    ):
        super().__init__()
        
        # Encoder
        encoder_layers = []
        prev_dim = input_dim
        for hidden_dim in hidden_layers:
            encoder_layers.extend([
                nn.Linear(prev_dim, hidden_dim),
                nn.LayerNorm(hidden_dim),
                nn.ReLU(),
                nn.Dropout(0.2)
            ])
            prev_dim = hidden_dim
            
        self.encoder = nn.Sequential(*encoder_layers)
        self.fc_mu = nn.Linear(hidden_layers[-1], latent_dim)
        self.fc_var = nn.Linear(hidden_layers[-1], latent_dim)
        
        # Decoder
        decoder_layers = []
        hidden_layers.reverse()
        prev_dim = latent_dim
        for hidden_dim in hidden_layers:
            decoder_layers.extend([
                nn.Linear(prev_dim, hidden_dim),
                nn.LayerNorm(hidden_dim),
                nn.ReLU(),
                nn.Dropout(0.2)
            ])
            prev_dim = hidden_dim
            
        decoder_layers.append(nn.Linear(hidden_layers[-1], input_dim))
        self.decoder = nn.Sequential(*decoder_layers)
        
    def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        hidden = self.encoder(x)
        return self.fc_mu(hidden), self.fc_var(hidden)
        
    def reparameterize(
        self,
        mu: torch.Tensor,
        log_var: torch.Tensor
    ) -> torch.Tensor:
        std = torch.exp(0.5 * log_var)
        eps = torch.randn_like(std)
        return mu + eps * std
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        return self.decoder(z)

2. Statistical Detector

class StatisticalDetector:
    def __init__(self, config: Dict[str, Any]):
        self.methods = {
            'isolation_forest': IsolationForest(
                contamination=config['contamination'],
                random_state=42
            ),
            'robust_covariance': EllipticEnvelope(
                contamination=config['contamination'],
                random_state=42
            ),
            'one_class_svm': OneClassSVM(
                kernel='rbf',
                nu=config['contamination']
            )
        }
        self.ensemble_weights = config['ensemble_weights']
        
    def fit(self, data: np.ndarray) -> None:
        for detector in self.methods.values():
            detector.fit(data)
            
    def detect(self, data: np.ndarray) -> np.ndarray:
        predictions = np.zeros((len(data), len(self.methods)))
        
        for i, detector in enumerate(self.methods.values()):
            predictions[:, i] = detector.predict(data)
            
        # Weighted voting
        weighted_pred = np.average(
            predictions,
            weights=self.ensemble_weights,
            axis=1
        )
        return weighted_pred < 0  # Anomaly is -1, normal is 1

3. Real-time Processing Engine

class RealTimeAnomalyDetector:
    def __init__(self, config: Dict[str, Any]):
        self.deep_detector = DeepAnomalyDetector(config['deep_config'])
        self.statistical_detector = StatisticalDetector(config['stat_config'])
        self.stream_processor = StreamProcessor(
            window_size=config['window_size'],
            stride=config['stride']
        )
        self.alert_manager = AlertManager(config['alert_config'])
        
    async def process_stream(
        self,
        data_stream: AsyncIterator[np.ndarray]
    ) -> AsyncIterator[Dict[str, Any]]:
        async for batch in self.stream_processor.process(data_stream):
            # Run detectors in parallel
            deep_results, stat_results = await asyncio.gather(
                self._run_deep_detector(batch),
                self._run_statistical_detector(batch)
            )
            
            # Combine results
            combined_results = self._combine_detector_results(
                deep_results,
                stat_results
            )
            
            # Handle alerts if necessary
            if combined_results['is_anomaly']:
                await self.alert_manager.handle_anomaly(combined_results)
                
            yield combined_results
            
    async def _run_deep_detector(
        self,
        batch: np.ndarray
    ) -> Dict[str, Any]:
        is_anomaly, scores = self.deep_detector.detect(batch)
        return {
            'method': 'deep',
            'is_anomaly': is_anomaly,
            'scores': scores
        }

4. Alert Management

class AlertManager:
    def __init__(self, config: Dict[str, Any]):
        self.alert_levels = {
            'critical': self._handle_critical,
            'warning': self._handle_warning,
            'info': self._handle_info
        }
        self.notification_service = NotificationService(
            config['notification']
        )
        self.alert_store = AlertStore(config['storage'])
        
    async def handle_anomaly(
        self,
        anomaly_data: Dict[str, Any]
    ) -> None:
        severity = self._determine_severity(anomaly_data)
        
        # Store alert
        await self.alert_store.store_alert({
            'timestamp': datetime.now(),
            'severity': severity,
            'data': anomaly_data
        })
        
        # Handle based on severity
        handler = self.alert_levels[severity]
        await handler(anomaly_data)
        
    def _determine_severity(
        self,
        anomaly_data: Dict[str, Any]
    ) -> str:
        score = anomaly_data['scores'].max()
        if score > 0.9:
            return 'critical'
        elif score > 0.7:
            return 'warning'
        return 'info'

Usage Example

# Initialize detector
config = {
    'deep_config': {
        'input_dim': 100,
        'latent_dim': 20,
        'hidden_layers': [64, 32]
    },
    'stat_config': {
        'contamination': 0.1,
        'ensemble_weights': [0.4, 0.3, 0.3]
    },
    'window_size': 100,
    'stride': 10,
    'alert_config': {
        'notification': {
            'email': ['alerts@company.com'],
            'slack_webhook': 'https://hooks.slack.com/...'
        },
        'storage': {
            'type': 'elasticsearch',
            'host': 'localhost',
            'port': 9200
        }
    }
}

detector = RealTimeAnomalyDetector(config)

# Process data stream
async for result in detector.process_stream(data_stream):
    if result['is_anomaly']:
        print(f"Anomaly detected: {result}")

View Source Code | Documentation | Contributing Guidelines