import HeaderLink from './HeaderLink.astro';

Enterprise AutoML System

Production-grade automated machine learning system with neural architecture search, hyperparameter optimization, and automated feature engineering

System Architecture

A comprehensive AutoML system that automates the entire machine learning pipeline from data preprocessing to model deployment.

Core Components

class NASController:
    def __init__(self, config: Dict[str, Any]):
        self.search_space = ModelSearchSpace(
            min_layers=config['min_layers'],
            max_layers=config['max_layers'],
            operations=config['operations']
        )
        self.controller = LSTMController(
            input_size=config['input_size'],
            hidden_size=config['hidden_size']
        )
        self.optimizer = torch.optim.Adam(
            self.controller.parameters(),
            lr=config['learning_rate']
        )
        
    def sample_architecture(self) -> ModelArchitecture:
        actions = []
        hidden = None
        
        # Sample architecture sequentially
        for _ in range(self.search_space.max_decisions):
            logits, hidden = self.controller(
                self._encode_current_state(actions),
                hidden
            )
            action = torch.multinomial(
                F.softmax(logits, dim=-1),
                num_samples=1
            )
            actions.append(action)
            
        return self.search_space.decode_actions(actions)
        
    def update_controller(
        self,
        architectures: List[ModelArchitecture],
        performances: List[float]
    ) -> float:
        # Compute rewards
        rewards = self._compute_rewards(performances)
        
        # Update controller using REINFORCE
        loss = 0
        for arch, reward in zip(architectures, rewards):
            actions = self.search_space.encode_architecture(arch)
            log_probs = self._compute_log_probs(actions)
            loss -= (log_probs * reward).mean()
            
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        
        return loss.item()

2. Hyperparameter Optimization

class BayesianOptimizer:
    def __init__(self, config: Dict[str, Any]):
        self.space = HyperparameterSpace(config['param_space'])
        self.gaussian_process = GaussianProcessRegressor(
            kernel=config['kernel'],
            alpha=config['noise']
        )
        self.acquisition = UpperConfidenceBound(
            beta=config['beta']
        )
        
    def suggest_hyperparameters(
        self,
        n_suggestions: int = 1
    ) -> List[Dict[str, Any]]:
        if len(self.trials) < self.n_random_starts:
            return self._random_suggestions(n_suggestions)
            
        # Optimize acquisition function
        X = self._optimize_acquisition(n_suggestions)
        
        # Convert to hyperparameter space
        return [
            self.space.transform(x)
            for x in X
        ]
        
    def update(
        self,
        hyperparameters: List[Dict[str, Any]],
        scores: List[float]
    ) -> None:
        X = np.array([
            self.space.flatten(hp)
            for hp in hyperparameters
        ])
        y = np.array(scores)
        
        # Update Gaussian Process
        if self.gaussian_process.X_train_ is None:
            self.gaussian_process.fit(X, y)
        else:
            X_train = np.vstack([
                self.gaussian_process.X_train_,
                X
            ])
            y_train = np.concatenate([
                self.gaussian_process.y_train_,
                y
            ])
            self.gaussian_process.fit(X_train, y_train)

3. Feature Engineering

class AutoFeatureEngineer:
    def __init__(self, config: Dict[str, Any]):
        self.transformers = {
            'numeric': NumericTransformer(config['numeric_config']),
            'categorical': CategoricalTransformer(config['categorical_config']),
            'temporal': TemporalFeatureGenerator(config['temporal_config']),
            'text': TextFeatureGenerator(config['text_config'])
        }
        self.feature_selector = FeatureSelector(
            selection_method=config['selection_method']
        )
        
    def generate_features(
        self,
        data: pd.DataFrame
    ) -> Tuple[pd.DataFrame, FeatureMetadata]:
        # Generate features for each type
        feature_sets = []
        metadata = []
        
        for col_type, transformer in self.transformers.items():
            cols = self._get_columns_of_type(data, col_type)
            if cols:
                features, meta = transformer.transform(data[cols])
                feature_sets.append(features)
                metadata.extend(meta)
                
        # Combine features
        all_features = pd.concat(feature_sets, axis=1)
        
        # Select best features
        selected_features = self.feature_selector.select(
            all_features,
            target=data[self.target_column]
        )
        
        return selected_features, metadata

class FeatureSelector:
    def __init__(self, selection_method: str):
        self.methods = {
            'mutual_info': self._mutual_information_selection,
            'lasso': self._lasso_selection,
            'tree': self._tree_importance_selection
        }
        self.method = self.methods[selection_method]
        
    def select(
        self,
        features: pd.DataFrame,
        target: pd.Series,
        k: Optional[int] = None
    ) -> pd.DataFrame:
        importance_scores = self.method(features, target)
        
        if k is None:
            k = self._estimate_optimal_features(
                importance_scores
            )
            
        selected_cols = importance_scores.nlargest(k).index
        return features[selected_cols]

4. Pipeline Optimization

class PipelineOptimizer:
    def __init__(self, config: Dict[str, Any]):
        self.nas_controller = NASController(config['nas_config'])
        self.hpo_optimizer = BayesianOptimizer(config['hpo_config'])
        self.feature_engineer = AutoFeatureEngineer(config['feature_config'])
        self.evaluator = ModelEvaluator(config['eval_config'])
        
    async def optimize_pipeline(
        self,
        dataset: Dataset,
        time_budget: int
    ) -> Tuple[Pipeline, float]:
        start_time = time.time()
        best_pipeline = None
        best_score = float('-inf')
        
        while time.time() - start_time < time_budget:
            # Sample architecture and hyperparameters
            architecture = self.nas_controller.sample_architecture()
            hyperparameters = self.hpo_optimizer.suggest_hyperparameters()
            
            # Generate features
            features, _ = self.feature_engineer.generate_features(
                dataset.train_data
            )
            
            # Build and evaluate pipeline
            pipeline = self._build_pipeline(
                architecture,
                hyperparameters,
                features
            )
            score = await self.evaluator.evaluate(pipeline, dataset)
            
            # Update optimizers
            self.nas_controller.update([architecture], [score])
            self.hpo_optimizer.update([hyperparameters], [score])
            
            # Update best pipeline
            if score > best_score:
                best_pipeline = pipeline
                best_score = score
                
        return best_pipeline, best_score

Usage Example

# Initialize AutoML system
config = {
    'nas_config': {
        'min_layers': 2,
        'max_layers': 10,
        'operations': ['conv3x3', 'conv5x5', 'maxpool', 'avgpool'],
        'input_size': 32,
        'hidden_size': 100
    },
    'hpo_config': {
        'param_space': {
            'learning_rate': ('log_float', 1e-4, 1e-1),
            'batch_size': ('int', 16, 256),
            'optimizer': ('categorical', ['adam', 'sgd', 'rmsprop'])
        }
    },
    'feature_config': {
        'selection_method': 'mutual_info',
        'numeric_config': {'max_bins': 10},
        'categorical_config': {'max_categories': 20}
    }
}

automl = PipelineOptimizer(config)

# Run optimization
best_pipeline, best_score = await automl.optimize_pipeline(
    dataset,
    time_budget=3600  # 1 hour
)

# Deploy best pipeline
deployment = ModelDeployment(best_pipeline)
await deployment.deploy()

View Source Code | Documentation | Contributing Guidelines