Enterprise Computer Vision Analytics
Advanced computer vision system implementing object detection, segmentation, and tracking with distributed processing for real-time video analytics
System Architecture
A scalable computer vision system that combines multiple deep learning models for real-time video analysis and object tracking.
Core Components
1. Video Processing Pipeline
class VideoProcessor:
def __init__(self, config: Dict[str, Any]):
self.frame_buffer = FrameBuffer(
max_size=config['buffer_size']
)
self.gpu_preprocessor = GPUPreprocessor(
batch_size=config['batch_size'],
input_shape=config['input_shape']
)
self.models = self._initialize_models(config['model_configs'])
async def process_video_stream(
self,
stream: AsyncVideoStream
) -> AsyncIterator[Dict[str, Any]]:
async for frames in self.frame_buffer.get_batch(stream):
# Preprocess on GPU
processed_frames = await self.gpu_preprocessor(frames)
# Run inference in parallel
results = await asyncio.gather(*[
model.infer(processed_frames)
for model in self.models.values()
])
# Merge results
yield self._merge_results(results)
@torch.cuda.amp.autocast()
def _preprocess_batch(
self,
frames: torch.Tensor
) -> torch.Tensor:
return self.gpu_preprocessor.preprocess(frames)
2. Object Detection and Tracking
class ObjectTracker:
def __init__(self, config: Dict[str, Any]):
self.detector = YOLOV8(
weights=config['detector_weights'],
confidence=config['confidence_threshold']
)
self.tracker = DeepSORT(
model_weights=config['tracker_weights'],
max_age=config['max_age'],
n_init=config['n_init']
)
self.feature_extractor = ResNet50(
weights='imagenet',
include_top=False
)
def track_objects(
self,
frame: np.ndarray,
detections: List[Detection]
) -> List[Track]:
# Extract appearance features
crops = self._get_detection_crops(frame, detections)
features = self.feature_extractor(crops)
# Update tracker
tracks = self.tracker.update(
detections=detections,
features=features
)
return self._post_process_tracks(tracks)
def _get_detection_crops(
self,
frame: np.ndarray,
detections: List[Detection]
) -> torch.Tensor:
crops = []
for det in detections:
crop = self._crop_and_resize(
frame,
det.bbox,
size=(224, 224)
)
crops.append(crop)
return torch.stack(crops)
3. Instance Segmentation
class SegmentationModule:
def __init__(self, config: Dict[str, Any]):
self.model = MaskRCNN(
backbone=config['backbone'],
num_classes=config['num_classes'],
min_confidence=config['min_confidence']
)
self.post_processor = SegmentationPostProcessor(
score_threshold=config['score_threshold'],
mask_threshold=config['mask_threshold']
)
@torch.no_grad()
def segment_instances(
self,
image: torch.Tensor
) -> Dict[str, torch.Tensor]:
# Run inference
outputs = self.model(image)
# Post-process results
instances = self.post_processor(outputs)
return {
'masks': instances.pred_masks,
'boxes': instances.pred_boxes,
'scores': instances.scores,
'labels': instances.pred_classes
}
def _apply_mask_refinement(
self,
masks: torch.Tensor,
boxes: torch.Tensor
) -> torch.Tensor:
return self.post_processor.refine_masks(masks, boxes)
4. Action Recognition
class ActionRecognizer:
def __init__(self, config: Dict[str, Any]):
self.model = SlowFast(
num_classes=config['num_classes'],
frame_length=config['frame_length']
)
self.temporal_pool = TemporalROIPool(
output_size=config['roi_size']
)
def recognize_actions(
self,
video_clip: torch.Tensor,
tracks: List[Track]
) -> List[Dict[str, Any]]:
# Extract track-specific clips
track_clips = self._extract_track_clips(
video_clip,
tracks
)
# Run action recognition
features = self.model.extract_features(track_clips)
actions = self.model.classify_actions(features)
return self._associate_actions_with_tracks(
actions,
tracks
)
5. Scene Understanding
class SceneAnalyzer:
def __init__(self, config: Dict[str, Any]):
self.scene_classifier = EfficientNet(
model_name=config['model_name'],
num_classes=config['num_scenes']
)
self.relationship_detector = SceneGraphGenerator(
config['relationship_config']
)
def analyze_scene(
self,
frame: torch.Tensor,
detections: List[Detection]
) -> Dict[str, Any]:
# Classify scene
scene_features = self.scene_classifier.extract_features(frame)
scene_type = self.scene_classifier.classify(scene_features)
# Generate scene graph
scene_graph = self.relationship_detector(
frame,
detections,
scene_type
)
return {
'scene_type': scene_type,
'scene_graph': scene_graph,
'spatial_relationships': self._extract_spatial_relationships(
scene_graph
)
}
Performance Optimization
class PerformanceOptimizer:
def __init__(self):
self.profiler = torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA
]
)
def optimize_pipeline(
self,
pipeline: VideoProcessor,
sample_batch: torch.Tensor
) -> Dict[str, float]:
with self.profiler as prof:
pipeline.process_batch(sample_batch)
bottlenecks = self._identify_bottlenecks(prof)
optimizations = self._suggest_optimizations(bottlenecks)
return {
'bottlenecks': bottlenecks,
'optimizations': optimizations,
'metrics': self._compute_performance_metrics(prof)
}
Usage Example
# Initialize system
config = {
'buffer_size': 30,
'batch_size': 16,
'input_shape': (3, 640, 640),
'model_configs': {
'detector': {
'weights': 'yolov8x.pt',
'confidence_threshold': 0.5
},
'tracker': {
'weights': 'deepsort.pt',
'max_age': 30
},
'segmentation': {
'backbone': 'resnet101',
'num_classes': 80
}
}
}
processor = VideoProcessor(config)
# Process video stream
async for results in processor.process_video_stream(video_stream):
detections = results['detections']
tracks = results['tracks']
segments = results['segments']
actions = results['actions']
scene = results['scene']
# Handle results
await handle_analytics_results(results)