Advanced Customer Segmentation System
Enterprise-grade customer segmentation platform implementing clustering, behavioral analysis, and real-time segment classification
System Architecture
A comprehensive customer segmentation system that combines multiple clustering approaches with real-time classification and behavioral analysis.
Core Components
1. Feature Engineering Pipeline
class CustomerFeatureProcessor:
def __init__(self, config: Dict[str, Any]):
self.transformers = {
'behavioral': BehavioralFeatureGenerator(
window_sizes=config['time_windows']
),
'demographic': DemographicEncoder(
encoding_config=config['encoding']
),
'transactional': TransactionAggregator(
agg_config=config['aggregation']
)
}
self.scaler = RobustScaler()
async def generate_features(
self,
customer_data: pd.DataFrame
) -> pd.DataFrame:
feature_sets = []
# Generate features in parallel
feature_tasks = [
transformer.transform(customer_data)
for transformer in self.transformers.values()
]
results = await asyncio.gather(*feature_tasks)
features = pd.concat(results, axis=1)
# Scale features
scaled_features = self.scaler.fit_transform(features)
return pd.DataFrame(
scaled_features,
columns=features.columns,
index=features.index
)
class BehavioralFeatureGenerator:
def __init__(self, window_sizes: List[str]):
self.windows = window_sizes
self.event_processors = {
'purchase': self._process_purchase_events,
'browsing': self._process_browsing_events,
'engagement': self._process_engagement_events
}
async def transform(
self,
events: pd.DataFrame
) -> pd.DataFrame:
features = {}
for window in self.windows:
window_events = self._get_windowed_events(events, window)
for event_type, processor in self.event_processors.items():
features.update(
processor(window_events, window)
)
return pd.DataFrame.from_dict(features)
2. Clustering Engine
class ClusteringEngine:
def __init__(self, config: Dict[str, Any]):
self.models = {
'kmeans': KMeansClusterer(config['kmeans_config']),
'hierarchical': HierarchicalClusterer(config['hierarchical_config']),
'dbscan': DBSCANClusterer(config['dbscan_config'])
}
self.ensemble = ClusterEnsemble(config['ensemble_config'])
self.validator = ClusterValidator()
async def generate_segments(
self,
features: pd.DataFrame
) -> SegmentationResults:
# Run multiple clustering algorithms
cluster_results = {}
for name, model in self.models.items():
cluster_results[name] = await model.fit_predict(features)
# Validate clustering quality
validation_results = await self.validator.validate_all(
features,
cluster_results
)
# Generate ensemble clustering
ensemble_clusters = await self.ensemble.combine_clusters(
cluster_results,
validation_results
)
return SegmentationResults(
clusters=ensemble_clusters,
individual_results=cluster_results,
validation=validation_results
)
class ClusterValidator:
def __init__(self):
self.metrics = {
'silhouette': silhouette_score,
'calinski': calinski_harabasz_score,
'davies': davies_bouldin_score
}
async def validate_all(
self,
features: pd.DataFrame,
cluster_results: Dict[str, np.ndarray]
) -> Dict[str, Dict[str, float]]:
validation_results = {}
for model_name, clusters in cluster_results.items():
validation_results[model_name] = {
metric_name: metric_func(features, clusters)
for metric_name, metric_func in self.metrics.items()
}
return validation_results
3. Segment Analysis
class SegmentAnalyzer:
def __init__(self, config: Dict[str, Any]):
self.profiler = SegmentProfiler(config['profile_config'])
self.comparator = SegmentComparator()
self.visualizer = SegmentVisualizer()
async def analyze_segments(
self,
features: pd.DataFrame,
segments: np.ndarray
) -> SegmentAnalysis:
# Generate segment profiles
profiles = await self.profiler.generate_profiles(
features,
segments
)
# Compare segments
comparisons = await self.comparator.compare_segments(
features,
segments,
profiles
)
# Generate visualizations
visualizations = await self.visualizer.create_visualizations(
features,
segments,
profiles
)
return SegmentAnalysis(
profiles=profiles,
comparisons=comparisons,
visualizations=visualizations
)
class SegmentProfiler:
def __init__(self, config: Dict[str, Any]):
self.summarizers = {
'statistical': StatisticalSummarizer(),
'behavioral': BehavioralSummarizer(),
'demographic': DemographicSummarizer()
}
async def generate_profiles(
self,
features: pd.DataFrame,
segments: np.ndarray
) -> Dict[int, SegmentProfile]:
profiles = {}
for segment_id in np.unique(segments):
segment_mask = segments == segment_id
segment_features = features[segment_mask]
profile = {}
for summarizer in self.summarizers.values():
profile.update(
await summarizer.summarize(segment_features)
)
profiles[segment_id] = SegmentProfile(profile)
return profiles
4. Real-time Classification
class SegmentClassifier:
def __init__(self, config: Dict[str, Any]):
self.feature_processor = CustomerFeatureProcessor(
config['feature_config']
)
self.classifier = LightGBMClassifier(
config['classifier_config']
)
self.cache = ClassificationCache(
config['cache_config']
)
async def classify_customer(
self,
customer_data: Dict[str, Any]
) -> SegmentPrediction:
# Check cache
cached_result = await self.cache.get(
customer_data['customer_id']
)
if cached_result:
return cached_result
# Generate features
features = await self.feature_processor.generate_features(
customer_data
)
# Predict segment
segment_probs = self.classifier.predict_proba(features)
prediction = SegmentPrediction(
segment_id=np.argmax(segment_probs),
probabilities=segment_probs
)
# Cache result
await self.cache.store(
customer_data['customer_id'],
prediction
)
return prediction
Usage Example
# Initialize segmentation system
config = {
'feature_config': {
'time_windows': ['7d', '30d', '90d'],
'encoding': {'max_categories': 10},
'aggregation': {'functions': ['mean', 'sum', 'count']}
},
'clustering_config': {
'kmeans_config': {'n_clusters': range(2, 15)},
'hierarchical_config': {'n_clusters': range(2, 15)},
'dbscan_config': {'eps': [0.3, 0.5, 0.7]}
}
}
segmentation = CustomerSegmentation(config)
# Generate customer segments
features = await segmentation.generate_features(customer_data)
segmentation_results = await segmentation.generate_segments(features)
# Analyze segments
analysis = await segmentation.analyze_segments(
features,
segmentation_results.clusters
)
# Classify new customer
new_customer = {
'customer_id': 'CUST123',
'transactions': [...],
'events': [...],
'demographics': {...}
}
segment = await segmentation.classify_customer(new_customer)