Enterprise Data Lake Architecture
Production-grade data lake system implementing multi-zone storage, data governance, and automated data processing pipelines for large-scale data management
System Architecture
A comprehensive data lake architecture that combines multi-zone storage, data governance, and automated processing capabilities.
Core Components
1. Data Ingestion Pipeline
class DataIngestionPipeline:
def __init__(self, config: Dict[str, Any]):
self.source_connectors = {
'kafka': KafkaConnector(config['kafka_config']),
'rest': RestAPIConnector(config['api_config']),
'database': DatabaseConnector(config['db_config']),
'file': FileSystemConnector(config['file_config'])
}
self.validator = DataValidator(config['validation_config'])
self.router = ZoneRouter(config['routing_config'])
async def ingest_data(
self,
source: str,
data_spec: DataSpec
) -> IngestionResult:
# Get appropriate connector
connector = self.source_connectors[source]
# Extract data
raw_data = await connector.extract_data(data_spec)
# Validate data
validation_result = await self.validator.validate(
raw_data,
data_spec.schema
)
if validation_result.is_valid:
# Route to appropriate zone
zone_path = await self.router.route_data(
raw_data,
data_spec
)
# Write to zone
write_result = await self._write_to_zone(
raw_data,
zone_path
)
return IngestionResult(
status='success',
location=zone_path,
metadata=write_result.metadata
)
return IngestionResult(
status='failed',
errors=validation_result.errors
)
2. Zone Management
class ZoneManager:
def __init__(self, config: Dict[str, Any]):
self.zones = {
'raw': RawZone(config['raw_config']),
'cleansed': CleansedZone(config['cleansed_config']),
'curated': CuratedZone(config['curated_config']),
'consumption': ConsumptionZone(config['consumption_config'])
}
self.policy_manager = PolicyManager(config['policy_config'])
async def process_data(
self,
data: Any,
zone_path: str
) -> ProcessingResult:
# Get zone handler
zone = self._get_zone_handler(zone_path)
# Apply zone-specific processing
processed_data = await zone.process_data(data)
# Apply policies
await self.policy_manager.apply_policies(
processed_data,
zone_path
)
return ProcessingResult(
data=processed_data,
zone=zone_path
)
class CuratedZone:
def __init__(self, config: Dict[str, Any]):
self.quality_checker = DataQualityChecker(
config['quality_config']
)
self.enricher = DataEnricher(config['enrichment_config'])
self.partitioner = DataPartitioner(
config['partition_config']
)
3. Data Governance
class GovernanceEngine:
def __init__(self, config: Dict[str, Any]):
self.metadata_store = MetadataStore(config['metadata_config'])
self.lineage_tracker = LineageTracker(
config['lineage_config']
)
self.access_manager = AccessManager(
config['access_config']
)
self.compliance_checker = ComplianceChecker(
config['compliance_config']
)
async def govern_data(
self,
data: Any,
metadata: Dict[str, Any]
) -> GovernanceResult:
# Track lineage
lineage = await self.lineage_tracker.track(
data,
metadata
)
# Check compliance
compliance_result = await self.compliance_checker.check(
data,
metadata
)
if not compliance_result.is_compliant:
return GovernanceResult(
status='failed',
issues=compliance_result.issues
)
# Store metadata
await self.metadata_store.store(
metadata,
lineage
)
# Set access controls
access_policies = await self.access_manager.set_policies(
data,
metadata
)
return GovernanceResult(
status='success',
lineage=lineage,
access_policies=access_policies
)
4. Query Engine
class QueryEngine:
def __init__(self, config: Dict[str, Any]):
self.query_optimizer = QueryOptimizer(
config['optimizer_config']
)
self.execution_engine = QueryExecutor(
config['executor_config']
)
self.cache_manager = QueryCache(config['cache_config'])
async def execute_query(
self,
query: Query,
context: Optional[Dict[str, Any]] = None
) -> QueryResult:
# Check cache
cached_result = await self.cache_manager.get_result(
query
)
if cached_result:
return cached_result
# Optimize query
optimized_query = await self.query_optimizer.optimize(
query,
context
)
# Execute query
result = await self.execution_engine.execute(
optimized_query
)
# Cache result
await self.cache_manager.store_result(
query,
result
)
return result
class QueryOptimizer:
def __init__(self, config: Dict[str, Any]):
self.cost_estimator = CostEstimator(config['cost_config'])
self.plan_generator = PlanGenerator(
config['plan_config']
)
self.statistics = StatisticsManager(
config['stats_config']
)
Usage Example
# Initialize data lake system
config = {
'storage_config': {
'raw_zone': 's3://data-lake/raw',
'cleansed_zone': 's3://data-lake/cleansed',
'curated_zone': 's3://data-lake/curated'
},
'governance_config': {
'metadata_store': 'postgresql://metadata-db',
'compliance_rules': 'compliance.yaml'
},
'processing_config': {
'batch_size': 1000,
'processing_threads': 8
}
}
data_lake = DataLakeSystem(config)
# Ingest data
data_spec = DataSpec(
source='kafka',
topic='user_events',
schema='user_events.avsc',
partition_key='timestamp'
)
ingestion_result = await data_lake.ingest_data(
'kafka',
data_spec
)
# Process data through zones
processing_result = await data_lake.process_data(
ingestion_result.location
)
# Query data
query = Query(
select=['user_id', 'event_type', 'timestamp'],
from_path='curated/user_events',
where={'event_type': 'purchase'},
partition_date='2024-02-10'
)
results = await data_lake.query_data(query)