import HeaderLink from './HeaderLink.astro';

Enterprise Data Quality Framework

Production-grade data quality system implementing automated validation, monitoring, and anomaly detection for data pipelines

System Architecture

A comprehensive data quality framework that ensures data integrity through automated validation, profiling, and monitoring.

Core Components

1. Data Validation Engine

class DataValidator:
    def __init__(self, config: Dict[str, Any]):
        self.validators = {
            'schema': SchemaValidator(config['schema_rules']),
            'statistical': StatisticalValidator(config['stat_rules']),
            'business': BusinessRuleValidator(config['business_rules']),
            'integrity': DataIntegrityValidator(config['integrity_rules'])
        }
        self.alert_manager = AlertManager(config['alert_config'])
        
    async def validate_dataset(
        self,
        data: pd.DataFrame
    ) -> ValidationReport:
        validation_tasks = [
            validator.validate(data)
            for validator in self.validators.values()
        ]
        
        results = await asyncio.gather(*validation_tasks)
        report = self._compile_validation_report(results)
        
        if report.has_critical_issues():
            await self.alert_manager.send_alert(report)
            
        return report

class SchemaValidator:
    def __init__(self, rules: Dict[str, Any]):
        self.required_columns = rules['required_columns']
        self.column_types = rules['column_types']
        self.unique_constraints = rules['unique_constraints']
        
    async def validate(
        self,
        data: pd.DataFrame
    ) -> List[ValidationIssue]:
        issues = []
        
        # Check column presence and types
        for col, expected_type in self.column_types.items():
            if col not in data.columns:
                issues.append(
                    ValidationIssue(
                        level='critical',
                        message=f"Missing required column: {col}"
                    )
                )
            elif not self._check_type(data[col], expected_type):
                issues.append(
                    ValidationIssue(
                        level='error',
                        message=f"Invalid type for column {col}"
                    )
                )
                
        # Check uniqueness constraints
        for constraint in self.unique_constraints:
            if not self._check_uniqueness(data, constraint):
                issues.append(
                    ValidationIssue(
                        level='error',
                        message=f"Uniqueness violation: {constraint}"
                    )
                )
                
        return issues

2. Data Profiling System

class DataProfiler:
    def __init__(self, config: Dict[str, Any]):
        self.profile_components = {
            'basic_stats': BasicStatsProfiler(),
            'distributions': DistributionProfiler(),
            'correlations': CorrelationProfiler(),
            'patterns': PatternProfiler()
        }
        self.history_manager = ProfileHistoryManager(
            storage_config=config['storage']
        )
        
    async def generate_profile(
        self,
        data: pd.DataFrame
    ) -> DataProfile:
        profile_tasks = [
            profiler.profile(data)
            for profiler in self.profile_components.values()
        ]
        
        results = await asyncio.gather(*profile_tasks)
        profile = self._merge_profile_results(results)
        
        # Store profile history
        await self.history_manager.store_profile(profile)
        
        return profile

class DistributionProfiler:
    def __init__(self):
        self.distribution_tests = {
            'normality': self._test_normality,
            'uniformity': self._test_uniformity,
            'stationarity': self._test_stationarity
        }
        
    async def profile(
        self,
        data: pd.DataFrame
    ) -> DistributionProfile:
        profiles = {}
        
        for column in data.select_dtypes(include=np.number):
            column_profile = {}
            for test_name, test_func in self.distribution_tests.items():
                test_result = await test_func(data[column])
                column_profile[test_name] = test_result
                
            profiles[column] = column_profile
            
        return DistributionProfile(profiles)

3. Quality Monitoring System

class QualityMonitor:
    def __init__(self, config: Dict[str, Any]):
        self.metrics = QualityMetrics(config['metric_config'])
        self.detector = DriftDetector(config['drift_config'])
        self.time_window = config['time_window']
        self.store = MetricStore(config['store_config'])
        
    async def monitor_quality(
        self,
        current_data: pd.DataFrame,
        reference_data: pd.DataFrame
    ) -> QualityReport:
        # Compute current metrics
        current_metrics = await self.metrics.compute_metrics(
            current_data
        )
        
        # Detect data drift
        drift_results = await self.detector.detect_drift(
            current_data,
            reference_data
        )
        
        # Store metrics
        await self.store.store_metrics(current_metrics)
        
        # Generate report
        return self._generate_quality_report(
            current_metrics,
            drift_results
        )

class DriftDetector:
    def __init__(self, config: Dict[str, Any]):
        self.drift_tests = {
            'ks_test': self._kolmogorov_smirnov_test,
            'chi_square': self._chi_square_test,
            'wasserstein': self._wasserstein_distance
        }
        self.threshold = config['drift_threshold']
        
    async def detect_drift(
        self,
        current: pd.DataFrame,
        reference: pd.DataFrame
    ) -> DriftReport:
        drift_results = {}
        
        for column in current.columns:
            column_results = {}
            for test_name, test_func in self.drift_tests.items():
                p_value = await test_func(
                    current[column],
                    reference[column]
                )
                column_results[test_name] = {
                    'p_value': p_value,
                    'has_drift': p_value < self.threshold
                }
                
            drift_results[column] = column_results
            
        return DriftReport(drift_results)

4. Automated Remediation

class QualityRemediation:
    def __init__(self, config: Dict[str, Any]):
        self.cleaners = {
            'missing_values': MissingValueCleaner(config['mv_config']),
            'outliers': OutlierCleaner(config['outlier_config']),
            'duplicates': DuplicateCleaner(config['duplicate_config']),
            'format': FormatCleaner(config['format_config'])
        }
        self.validation = DataValidator(config['validation_config'])
        
    async def clean_data(
        self,
        data: pd.DataFrame
    ) -> Tuple[pd.DataFrame, RemediationReport]:
        cleaned_data = data.copy()
        report = RemediationReport()
        
        # Apply cleaners sequentially
        for cleaner_name, cleaner in self.cleaners.items():
            cleaned_data, cleaner_report = await cleaner.clean(
                cleaned_data
            )
            report.add_cleaner_report(cleaner_name, cleaner_report)
            
        # Validate cleaned data
        validation_report = await self.validation.validate_dataset(
            cleaned_data
        )
        report.add_validation_report(validation_report)
        
        return cleaned_data, report

Usage Example

# Initialize quality framework
config = {
    'schema_rules': {
        'required_columns': ['id', 'timestamp', 'value'],
        'column_types': {
            'id': 'string',
            'timestamp': 'datetime',
            'value': 'float'
        },
        'unique_constraints': [['id']]
    },
    'stat_rules': {
        'value': {
            'min': 0,
            'max': 100,
            'std_dev_threshold': 3
        }
    },
    'monitoring_config': {
        'drift_threshold': 0.05,
        'time_window': '1d'
    }
}

quality_framework = DataQualityFramework(config)

# Run quality checks
validation_report = await quality_framework.validate_dataset(data)
profile = await quality_framework.profile_dataset(data)
quality_report = await quality_framework.monitor_quality(
    current_data,
    reference_data
)

# Handle quality issues
if validation_report.has_issues():
    cleaned_data, remediation_report = await quality_framework.clean_data(
        data
    )

View Source Code | Documentation | Contributing Guidelines