Distributed Image Processing Pipeline
High-performance distributed image processing system using OpenCV, Ray, and deep learning for real-time video analysis
System Architecture
A scalable distributed system for real-time image and video processing, leveraging Ray for distributed computing, OpenCV for image processing, and PyTorch for deep learning inference.
Core Components
1. Distributed Worker System
import ray
from typing import List, Tuple, Dict
import cv2
import numpy as np
@ray.remote(num_gpus=0.5)
class ImageProcessor:
def __init__(self, config: Dict[str, Any]):
self.models = self._load_models(config['model_paths'])
self.preprocessing = PreprocessingPipeline(
resize_dims=config['input_size'],
normalization=config['normalization']
)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def process_batch(self, image_batch: np.ndarray) -> List[Dict[str, Any]]:
processed = self.preprocessing(image_batch)
with torch.no_grad():
results = {
'segmentation': self.models['segmentation'](processed),
'detection': self.models['detection'](processed),
'classification': self.models['classification'](processed)
}
return self._postprocess_results(results)
2. Video Stream Handler
class VideoStreamManager:
def __init__(self, num_streams: int, buffer_size: int = 30):
self.streams = [
StreamBuffer(buffer_size=buffer_size)
for _ in range(num_streams)
]
self.frame_processors = [
ImageProcessor.remote()
for _ in range(ray.available_resources()['GPU'])
]
async def process_streams(self) -> None:
while True:
frames = await self._gather_frames()
batches = self._create_batches(frames, batch_size=16)
# Distribute processing across workers
futures = [
processor.process_batch.remote(batch)
for processor, batch in zip(self.frame_processors, batches)
]
results = await ray.get(futures)
self._update_streams(results)
def _create_batches(
self,
frames: List[np.ndarray],
batch_size: int
) -> List[np.ndarray]:
return np.array_split(frames, max(1, len(frames) // batch_size))
3. Image Enhancement Pipeline
class EnhancementPipeline:
def __init__(self):
self.denoiser = cv2.cuda.createNonLocalMeans()
self.super_res = SuperResolutionModel()
self.color_correction = ColorCorrectionModule()
def enhance(self, image: np.ndarray) -> np.ndarray:
# Convert to GPU memory
gpu_image = cv2.cuda_GpuMat()
gpu_image.upload(image)
# Apply enhancements
denoised = self.denoiser.apply(gpu_image)
enhanced = self.color_correction(denoised)
super_res = self.super_res(enhanced)
# Download result
return super_res.download()
@torch.cuda.amp.autocast()
def _apply_super_resolution(self, image: torch.Tensor) -> torch.Tensor:
return self.super_res(image)
4. Real-time Analysis System
class AnalysisSystem:
def __init__(self, config: Dict[str, Any]):
self.feature_extractor = FeatureExtractor(
backbone=config['backbone'],
pretrained=True
)
self.object_detector = YOLOv5(
weights=config['detector_weights'],
conf_threshold=0.5
)
self.tracker = DeepSORT(
model_weights=config['tracker_weights'],
max_age=30
)
def analyze_frame(
self,
frame: np.ndarray
) -> Tuple[List[Detection], List[Track]]:
# Extract features
features = self.feature_extractor(frame)
# Detect objects
detections = self.object_detector(frame)
# Update tracking
tracks = self.tracker.update(
detections=detections,
features=features
)
return detections, tracks
5. Data Management System
class DataManager:
def __init__(self, storage_path: str):
self.storage = StorageHandler(storage_path)
self.index = faiss.IndexFlatL2(512) # Feature dimension
self.metadata = SQLiteDict('./metadata.sqlite')
async def store_frame_data(
self,
frame_id: str,
frame: np.ndarray,
metadata: Dict[str, Any]
) -> None:
# Extract features for indexing
features = self.feature_extractor(frame)
# Store frame and metadata
await asyncio.gather(
self.storage.store_frame(frame_id, frame),
self.storage.store_metadata(frame_id, metadata)
)
# Update search index
self.index.add(features.numpy())
self.metadata[frame_id] = metadata
Performance Optimization
class PerformanceOptimizer:
def __init__(self):
self.profiler = cProfile.Profile()
self.memory_tracker = memory_tracker.SummaryTracker()
def optimize_batch_size(
self,
sample_data: np.ndarray
) -> Tuple[int, float]:
batch_sizes = [1, 2, 4, 8, 16, 32, 64]
timings = []
for batch_size in batch_sizes:
timing = self._measure_processing_time(
sample_data,
batch_size
)
timings.append(timing)
return self._find_optimal_batch_size(batch_sizes, timings)
Deployment Configuration
version: '3.8'
services:
processor:
image: image-processor:latest
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
environment:
- CUDA_VISIBLE_DEVICES=0
- MODEL_PATH=/models
- BATCH_SIZE=16
volumes:
- ./models:/models
- ./data:/data
redis:
image: redis:latest
ports:
- "6379:6379"
System Requirements
-
Hardware
- NVIDIA GPU (8GB+ VRAM)
- 32GB+ RAM
- NVMe SSD for storage
- 10Gbps network connection
-
Software
- CUDA 11.x
- Python 3.8+
- OpenCV with CUDA support
- PyTorch 1.9+
- Ray 2.0+
Getting Started
- Install dependencies:
pip install -r requirements.txt
python -m spacy download en_core_web_lg
- Configure the system:
config = {
'input_size': (640, 640),
'batch_size': 16,
'num_workers': 4,
'model_paths': {
'detection': 'models/yolov5x.pt',
'segmentation': 'models/mask_rcnn.pt',
'classification': 'models/efficientnet.pt'
}
}
- Start the processing pipeline:
ray.init(num_gpus=4)
manager = VideoStreamManager(num_streams=8)
await manager.process_streams()