import HeaderLink from './HeaderLink.astro';

Advanced Image Segmentation System

Enterprise-grade image segmentation platform implementing deep learning models, real-time processing, and automated training pipelines for computer vision

System Architecture

A comprehensive image segmentation system that combines state-of-the-art deep learning models with efficient processing and deployment pipelines.

Core Components

1. Image Processing Pipeline

class ImageProcessor:
    def __init__(self, config: Dict[str, Any]):
        self.transforms = A.Compose([
            A.Resize(
                height=config['height'],
                width=config['width']
            ),
            A.Normalize(
                mean=config['mean'],
                std=config['std']
            ),
            A.ColorJitter(
                brightness=0.2,
                contrast=0.2,
                saturation=0.2
            )
        ])
        self.augmenter = ImageAugmenter(config['augmentation'])
        
    async def process_image(
        self,
        image: np.ndarray,
        augment: bool = False
    ) -> ProcessedImage:
        # Apply base transforms
        processed = self.transforms(image=image)['image']
        
        if augment:
            # Apply augmentations
            augmented = await self.augmenter.augment(processed)
            return ProcessedImage(
                original=processed,
                augmented=augmented
            )
            
        return ProcessedImage(
            original=processed,
            augmented=None
        )

class ImageAugmenter:
    def __init__(self, config: Dict[str, Any]):
        self.spatial_transforms = A.Compose([
            A.RandomRotate90(p=0.5),
            A.Flip(p=0.5),
            A.ShiftScaleRotate(p=0.5),
            A.ElasticTransform(p=0.3)
        ])
        self.intensity_transforms = A.Compose([
            A.RandomBrightnessContrast(p=0.5),
            A.RandomGamma(p=0.5),
            A.GaussNoise(p=0.3)
        ])

2. Segmentation Model

class SegmentationModel(nn.Module):
    def __init__(self, config: Dict[str, Any]):
        super().__init__()
        self.encoder = self._build_encoder(
            config['encoder_name'],
            config['encoder_weights']
        )
        self.decoder = UNetDecoder(
            encoder_channels=self.encoder.channels,
            decoder_channels=config['decoder_channels']
        )
        self.segmentation_head = SegmentationHead(
            in_channels=config['decoder_channels'][-1],
            num_classes=config['num_classes']
        )
        
    def forward(
        self,
        x: torch.Tensor
    ) -> Dict[str, torch.Tensor]:
        # Extract features
        features = self.encoder(x)
        
        # Decode features
        decoder_output = self.decoder(*features)
        
        # Generate masks
        masks = self.segmentation_head(decoder_output)
        
        return {
            'masks': masks,
            'features': features[-1]
        }

class UNetDecoder(nn.Module):
    def __init__(
        self,
        encoder_channels: List[int],
        decoder_channels: List[int]
    ):
        super().__init__()
        
        # Create decoder blocks
        self.blocks = nn.ModuleList([
            DecoderBlock(
                in_channels=in_ch,
                skip_channels=skip_ch,
                out_channels=out_ch
            )
            for in_ch, skip_ch, out_ch in zip(
                encoder_channels[:-1],
                encoder_channels[1:],
                decoder_channels
            )
        ])

3. Training System

class SegmentationTrainer:
    def __init__(self, config: Dict[str, Any]):
        self.model = SegmentationModel(config['model_config'])
        self.criterion = self._setup_loss(config['loss_config'])
        self.optimizer = self._setup_optimizer(config['optimizer_config'])
        self.scheduler = self._setup_scheduler(config['scheduler_config'])
        self.metrics = SegmentationMetrics(config['metrics_config'])
        
    async def train(
        self,
        train_loader: DataLoader,
        val_loader: DataLoader
    ) -> TrainingResults:
        best_model = None
        best_iou = 0.0
        
        for epoch in range(self.config['epochs']):
            # Training phase
            train_metrics = await self._train_epoch(train_loader)
            
            # Validation phase
            val_metrics = await self._validate_epoch(val_loader)
            
            # Update best model
            if val_metrics['mean_iou'] > best_iou:
                best_iou = val_metrics['mean_iou']
                best_model = copy.deepcopy(self.model)
                
            # Update learning rate
            self.scheduler.step(val_metrics['loss'])
            
        return TrainingResults(
            model=best_model,
            metrics=val_metrics
        )
        
    async def _train_epoch(
        self,
        dataloader: DataLoader
    ) -> Dict[str, float]:
        self.model.train()
        epoch_metrics = defaultdict(float)
        
        for batch in dataloader:
            images, masks = batch['image'], batch['mask']
            
            # Forward pass
            outputs = self.model(images)
            loss = self.criterion(outputs['masks'], masks)
            
            # Backward pass
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()
            
            # Update metrics
            batch_metrics = self.metrics.calculate(
                outputs['masks'],
                masks
            )
            for k, v in batch_metrics.items():
                epoch_metrics[k] += v
                
        return {k: v / len(dataloader) for k, v in epoch_metrics.items()}

4. Inference Pipeline

class SegmentationInference:
    def __init__(self, config: Dict[str, Any]):
        self.processor = ImageProcessor(config['processor_config'])
        self.model = self._load_model(config['model_path'])
        self.post_processor = SegmentationPostProcessor(
            config['post_processing']
        )
        
    async def segment_image(
        self,
        image: np.ndarray
    ) -> SegmentationResult:
        # Process image
        processed = await self.processor.process_image(image)
        
        # Generate predictions
        with torch.no_grad():
            outputs = self.model(processed.original)
            
        # Post-process predictions
        masks = await self.post_processor.process(
            outputs['masks'],
            original_size=(image.shape[0], image.shape[1])
        )
        
        return SegmentationResult(
            masks=masks,
            confidence=outputs.get('confidence', None)
        )

class SegmentationPostProcessor:
    def __init__(self, config: Dict[str, Any]):
        self.threshold = config['confidence_threshold']
        self.min_size = config['min_object_size']
        self.refinement = MaskRefinement(config['refinement_config'])
        
    async def process(
        self,
        masks: torch.Tensor,
        original_size: Tuple[int, int]
    ) -> np.ndarray:
        # Apply confidence threshold
        binary_masks = (masks > self.threshold).float()
        
        # Remove small objects
        filtered_masks = self._filter_small_objects(binary_masks)
        
        # Refine mask boundaries
        refined_masks = await self.refinement.refine(filtered_masks)
        
        # Resize to original dimensions
        return F.interpolate(
            refined_masks,
            size=original_size,
            mode='bilinear',
            align_corners=False
        )

Usage Example

# Initialize segmentation system
config = {
    'model_config': {
        'encoder_name': 'resnet50',
        'encoder_weights': 'imagenet',
        'decoder_channels': [256, 128, 64, 32, 16],
        'num_classes': 3
    },
    'training_config': {
        'batch_size': 16,
        'learning_rate': 1e-4,
        'epochs': 50
    },
    'inference_config': {
        'confidence_threshold': 0.5,
        'min_object_size': 100
    }
}

segmentation = ImageSegmentationSystem(config)

# Train model
training_results = await segmentation.train(train_data, val_data)

# Perform segmentation
image = cv2.imread('example.jpg')
result = await segmentation.segment_image(image)

# Visualize results
visualization = segmentation.visualize_results(
    image,
    result.masks,
    alpha=0.5
)

View Source Code | Documentation | Contributing Guidelines