Enterprise MLOps Pipeline
Production-grade MLOps system implementing continuous training, model deployment, monitoring, and automated model lifecycle management
System Architecture
A comprehensive MLOps pipeline that combines automated training, deployment, monitoring, and model lifecycle management.
Core Components
1. Model Training Pipeline
class TrainingPipeline:
def __init__(self, config: Dict[str, Any]):
self.data_validator = DataValidator(config['validation_config'])
self.feature_store = FeatureStore(config['feature_config'])
self.experiment_tracker = ExperimentTracker(
config['tracking_config']
)
self.model_registry = ModelRegistry(config['registry_config'])
async def train_model(
self,
model_config: ModelConfig,
data_config: DataConfig
) -> TrainingResult:
# Validate training data
validation_result = await self.data_validator.validate(
data_config
)
if not validation_result.is_valid:
raise DataValidationError(validation_result.errors)
# Get features from feature store
features = await self.feature_store.get_training_features(
data_config.feature_specs
)
# Start experiment tracking
with self.experiment_tracker.start_run() as run:
# Train model
model = await self._train_model(
features,
model_config
)
# Evaluate model
metrics = await self._evaluate_model(
model,
features.validation_set
)
# Register model if metrics meet criteria
if self._should_register(metrics):
model_info = await self.model_registry.register_model(
model,
metrics,
model_config
)
return TrainingResult(
model_info=model_info,
metrics=metrics,
run_id=run.id
)
2. Model Deployment Pipeline
class DeploymentPipeline:
def __init__(self, config: Dict[str, Any]):
self.model_registry = ModelRegistry(config['registry_config'])
self.deployer = ModelDeployer(config['deployer_config'])
self.validator = DeploymentValidator(
config['validation_config']
)
self.monitor = DeploymentMonitor(config['monitor_config'])
async def deploy_model(
self,
model_id: str,
deployment_config: DeploymentConfig
) -> DeploymentResult:
# Get model from registry
model = await self.model_registry.get_model(model_id)
# Validate deployment
validation_result = await self.validator.validate(
model,
deployment_config
)
if validation_result.is_valid:
# Deploy model
deployment = await self.deployer.deploy(
model,
deployment_config
)
# Setup monitoring
await self.monitor.setup_monitoring(
deployment,
deployment_config.monitoring_specs
)
return DeploymentResult(
status='success',
deployment_id=deployment.id,
endpoints=deployment.endpoints
)
return DeploymentResult(
status='failed',
errors=validation_result.errors
)
class ModelDeployer:
def __init__(self, config: Dict[str, Any]):
self.kubernetes_client = K8sClient(config['k8s_config'])
self.service_mesh = ServiceMesh(config['mesh_config'])
self.scaler = AutoScaler(config['scaling_config'])
3. Model Monitoring System
class ModelMonitor:
def __init__(self, config: Dict[str, Any]):
self.metric_collector = MetricCollector(
config['metrics_config']
)
self.drift_detector = DriftDetector(config['drift_config'])
self.performance_analyzer = PerformanceAnalyzer(
config['performance_config']
)
self.alert_manager = AlertManager(config['alert_config'])
async def monitor_model(
self,
deployment_id: str
) -> MonitoringResult:
# Collect metrics
metrics = await self.metric_collector.collect_metrics(
deployment_id
)
# Check for drift
drift_result = await self.drift_detector.detect_drift(
metrics
)
# Analyze performance
performance = await self.performance_analyzer.analyze(
metrics
)
# Handle alerts
if self._should_alert(drift_result, performance):
await self.alert_manager.send_alerts(
deployment_id,
drift_result,
performance
)
return MonitoringResult(
metrics=metrics,
drift=drift_result,
performance=performance
)
class DriftDetector:
def __init__(self, config: Dict[str, Any]):
self.feature_drift = FeatureDriftDetector(
config['feature_config']
)
self.prediction_drift = PredictionDriftDetector(
config['prediction_config']
)
self.concept_drift = ConceptDriftDetector(
config['concept_config']
)
4. Model Lifecycle Manager
class ModelLifecycleManager:
def __init__(self, config: Dict[str, Any]):
self.version_controller = VersionController(
config['version_config']
)
self.artifact_store = ArtifactStore(
config['artifact_config']
)
self.dependency_tracker = DependencyTracker(
config['dependency_config']
)
async def manage_lifecycle(
self,
model_id: str,
action: str
) -> LifecycleResult:
# Get model metadata
model_info = await self.version_controller.get_model_info(
model_id
)
if action == 'rollback':
result = await self._handle_rollback(model_info)
elif action == 'archive':
result = await self._handle_archive(model_info)
elif action == 'update':
result = await self._handle_update(model_info)
# Update dependencies
await self.dependency_tracker.update_dependencies(
model_id,
result
)
return result
Usage Example
# Initialize MLOps pipeline
config = {
'training_config': {
'experiment_tracking': {
'tracking_uri': 'mlflow://localhost:5000',
'registry_uri': 'postgresql://registry-db'
}
},
'deployment_config': {
'kubernetes_config': {
'cluster': 'production',
'namespace': 'ml-models'
},
'monitoring_config': {
'metrics_store': 'prometheus',
'alert_channels': ['slack', 'email']
}
}
}
mlops = MLOpsPipeline(config)
# Train new model
model_config = ModelConfig(
name='fraud_detection',
algorithm='xgboost',
hyperparameters={'max_depth': 6, 'eta': 0.1}
)
training_result = await mlops.train_model(
model_config,
data_config
)
# Deploy model
deployment_config = DeploymentConfig(
replicas=3,
resources={'cpu': '2', 'memory': '4Gi'},
monitoring_specs={
'metrics': ['latency', 'throughput', 'accuracy'],
'drift_detection': {
'feature_drift': True,
'concept_drift': True
}
}
)
deployment = await mlops.deploy_model(
training_result.model_id,
deployment_config
)
# Monitor deployment
monitoring_result = await mlops.monitor_model(
deployment.deployment_id
)