Predictive Healthcare Analytics Platform
Built an end-to-end machine learning platform for predicting patient readmission risks using electronic health records, achieving 89% accuracy and reducing readmission rates by 23%.
Project Overview
Developed a comprehensive healthcare analytics platform that processes patient data to predict readmission risks and recommend preventive measures. The system handles real-time EHR data integration, feature engineering, model training, and automated deployment.
Technical Architecture
Data Pipeline
class HealthcareDataPipeline:
def __init__(self, config: PipelineConfig):
self.spark = SparkSession.builder\
.appName("HealthcareETL")\
.config("spark.memory.fraction", "0.8")\
.config("spark.executor.cores", "4")\
.getOrCreate()
self.feature_store = self._initialize_feature_store()
def process_ehr_data(self, data_batch: DataFrame) -> DataFrame:
"""Process incoming EHR data with privacy preservation"""
return self.spark.sql("""
WITH encrypted_phi AS (
SELECT
SHA256(patient_id) as patient_id_hash,
admission_date,
ARRAY(
diagnosis_codes,
procedure_codes,
medication_codes
) as clinical_events
FROM data_batch
)
SELECT
patient_id_hash,
FEATURE_TRANSFORM(clinical_events) as features,
DATEDIFF(next_admission, admission_date) as days_to_readmission
FROM encrypted_phi
""")
Machine Learning Model
class ReadmissionPredictor(tf.keras.Model):
def __init__(self, config: ModelConfig):
super().__init__()
# Multi-modal architecture
self.clinical_encoder = ClinicalBERT(config.bert_config)
self.temporal_encoder = GRUEncoder(config.temporal_config)
self.fusion_layer = CrossAttention(config.fusion_config)
def call(self, inputs: Dict[str, tf.Tensor]) -> tf.Tensor:
# Process clinical notes
clinical_features = self.clinical_encoder(
inputs['notes'],
attention_mask=inputs['notes_mask']
)
# Process temporal data
temporal_features = self.temporal_encoder(
inputs['events'],
sequence_length=inputs['event_length']
)
# Fuse modalities
fused_features = self.fusion_layer(
clinical_features,
temporal_features
)
return self.classifier(fused_features)
MLOps Pipeline
Automated Training Pipeline
class TrainingPipeline:
def __init__(self):
self.sagemaker = boto3.client('sagemaker')
self.model_registry = ModelRegistry()
def train_model(self, data_path: str) -> None:
# Configure distributed training
training_config = {
'instance_type': 'ml.p3.8xlarge',
'instance_count': 4,
'hyperparameters': {
'learning_rate': 1e-4,
'batch_size': 32,
'epochs': 50
},
'metrics_definitions': [
{'Name': 'auc', 'Regex': 'AUC: ([0-9\\.]+)'},
{'Name': 'precision', 'Regex': 'Precision: ([0-9\\.]+)'}
]
}
# Launch training job
self.sagemaker.create_training_job(
TrainingJobName=f"readmission-pred-{int(time.time())}",
AlgorithmSpecification={
'TrainingImage': self.get_training_image(),
'TrainingInputMode': 'File'
},
RoleArn=self.role_arn,
InputDataConfig=[
{
'ChannelName': 'training',
'DataSource': {
'S3DataSource': {
'S3DataType': 'S3Prefix',
'S3Uri': data_path
}
}
}
],
**training_config
)
Model Monitoring
Real-time Performance Tracking
class ModelMonitor:
def __init__(self):
self.prometheus = PrometheusClient()
self.alert_manager = AlertManager()
def track_predictions(self,
predictions: np.ndarray,
ground_truth: np.ndarray) -> None:
# Calculate metrics
metrics = {
'accuracy': accuracy_score(ground_truth, predictions),
'auc_roc': roc_auc_score(ground_truth, predictions),
'precision': precision_score(ground_truth, predictions),
'recall': recall_score(ground_truth, predictions)
}
# Push to Prometheus
for metric_name, value in metrics.items():
self.prometheus.push_metric(
name=f"model_performance_{metric_name}",
value=value,
labels={'model_version': self.current_version}
)
# Check for drift
if self._detect_drift(metrics):
self.alert_manager.send_alert(
title="Model Drift Detected",
description=f"Performance degradation detected: {metrics}"
)
Impact Analysis
Clinical Outcomes
- Readmission reduction: 23%
- Average length of stay reduction: 2.1 days
- Annual cost savings: $2.5M
- Patient satisfaction increase: 15%
Technical Performance
- Prediction latency: 150ms (p95)
- System uptime: 99.99%
- Data processing throughput: 10k patients/minute
- Model retraining time: 4 hours
Future Enhancements
-
Advanced Analytics
- Implementing causal inference models
- Adding multi-task learning for comorbidities
- Developing interpretable risk factors
-
Infrastructure
- Expanding to multi-hospital deployment
- Adding federated learning capabilities
- Implementing automated data quality checks
-
Clinical Integration
- Developing FHIR-compliant APIs
- Adding real-time alerting system
- Implementing clinical decision support