import HeaderLink from './HeaderLink.astro';

Advanced Reinforcement Learning Framework

Production-grade reinforcement learning system implementing PPO, SAC, and multi-agent training with distributed computing support

System Architecture

A scalable reinforcement learning framework that supports multiple algorithms, distributed training, and complex environment simulation.

Core Components

1. Policy Network Architecture

class PolicyNetwork(nn.Module):
    def __init__(self, config: Dict[str, Any]):
        super().__init__()
        self.state_encoder = StateEncoder(
            input_dim=config['state_dim'],
            hidden_dims=config['encoder_dims']
        )
        self.policy_head = GaussianPolicyHead(
            input_dim=config['encoder_dims'][-1],
            action_dim=config['action_dim'],
            log_std_bounds=(-20, 2)
        )
        self.value_head = ValueHead(
            input_dim=config['encoder_dims'][-1]
        )
        
    def forward(
        self,
        state: torch.Tensor
    ) -> Tuple[Distribution, torch.Tensor]:
        features = self.state_encoder(state)
        action_dist = self.policy_head(features)
        value = self.value_head(features)
        return action_dist, value

class GaussianPolicyHead(nn.Module):
    def __init__(
        self,
        input_dim: int,
        action_dim: int,
        log_std_bounds: Tuple[float, float]
    ):
        super().__init__()
        self.mean = nn.Linear(input_dim, action_dim)
        self.log_std = nn.Parameter(torch.zeros(action_dim))
        self.log_std_bounds = log_std_bounds
        
    def forward(self, x: torch.Tensor) -> Distribution:
        mean = self.mean(x)
        log_std = torch.clamp(
            self.log_std,
            *self.log_std_bounds
        )
        return Normal(mean, log_std.exp())

2. PPO Implementation

class PPOTrainer:
    def __init__(self, config: Dict[str, Any]):
        self.policy = PolicyNetwork(config['policy_config'])
        self.optimizer = torch.optim.Adam(
            self.policy.parameters(),
            lr=config['learning_rate']
        )
        self.clip_range = config['clip_range']
        self.value_coef = config['value_coef']
        self.entropy_coef = config['entropy_coef']
        
    def compute_loss(
        self,
        batch: Dict[str, torch.Tensor]
    ) -> Dict[str, torch.Tensor]:
        # Get current policy distributions and values
        action_dist, values = self.policy(batch['states'])
        
        # Compute policy ratio
        log_probs = action_dist.log_prob(batch['actions'])
        ratio = torch.exp(log_probs - batch['old_log_probs'])
        
        # Compute policy loss with clipping
        advantages = batch['advantages']
        policy_loss1 = advantages * ratio
        policy_loss2 = advantages * torch.clamp(
            ratio,
            1 - self.clip_range,
            1 + self.clip_range
        )
        policy_loss = -torch.min(policy_loss1, policy_loss2).mean()
        
        # Compute value loss
        value_loss = F.mse_loss(values, batch['returns'])
        
        # Compute entropy bonus
        entropy_loss = -action_dist.entropy().mean()
        
        return {
            'policy_loss': policy_loss,
            'value_loss': value_loss * self.value_coef,
            'entropy_loss': entropy_loss * self.entropy_coef
        }

3. Distributed Training

class DistributedTrainer:
    def __init__(self, config: Dict[str, Any]):
        self.num_workers = config['num_workers']
        self.rollout_length = config['rollout_length']
        self.workers = [
            RolloutWorker.remote(config)
            for _ in range(self.num_workers)
        ]
        self.learner = PPOLearner.remote(config)
        
    async def train(
        self,
        num_iterations: int
    ) -> List[Dict[str, float]]:
        metrics = []
        
        for _ in range(num_iterations):
            # Collect rollouts in parallel
            rollout_ids = [
                worker.collect_rollout.remote()
                for worker in self.workers
            ]
            rollouts = await ray.get(rollout_ids)
            
            # Update policy
            batch = self._prepare_batch(rollouts)
            update_metrics = await self.learner.update.remote(batch)
            
            # Sync updated policy with workers
            policy_state = await self.learner.get_policy_state.remote()
            sync_ops = [
                worker.sync_policy.remote(policy_state)
                for worker in self.workers
            ]
            await ray.get(sync_ops)
            
            metrics.append(update_metrics)
            
        return metrics

4. Environment Wrappers

class VectorizedEnv:
    def __init__(self, config: Dict[str, Any]):
        self.envs = [
            gym.make(config['env_id'])
            for _ in range(config['num_envs'])
        ]
        self.observation_space = self.envs[0].observation_space
        self.action_space = self.envs[0].action_space
        
    @torch.no_grad()
    def step(
        self,
        actions: np.ndarray
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, List[Dict]]:
        results = [
            env.step(action)
            for env, action in zip(self.envs, actions)
        ]
        states, rewards, dones, infos = zip(*results)
        
        # Reset environments that are done
        for i, done in enumerate(dones):
            if done:
                states[i] = self.envs[i].reset()
                
        return (
            np.stack(states),
            np.stack(rewards),
            np.stack(dones),
            infos
        )

5. Experience Replay

class PrioritizedReplayBuffer:
    def __init__(self, capacity: int, alpha: float = 0.6):
        self.capacity = capacity
        self.alpha = alpha
        self.buffer = []
        self.priorities = np.zeros(capacity, dtype=np.float32)
        self.position = 0
        
    def add(
        self,
        state: np.ndarray,
        action: np.ndarray,
        reward: float,
        next_state: np.ndarray,
        done: bool
    ) -> None:
        max_priority = self.priorities.max() if self.buffer else 1.0
        
        if len(self.buffer) < self.capacity:
            self.buffer.append(
                (state, action, reward, next_state, done)
            )
        else:
            self.buffer[self.position] = (
                state, action, reward, next_state, done
            )
            
        self.priorities[self.position] = max_priority
        self.position = (self.position + 1) % self.capacity
        
    def sample(
        self,
        batch_size: int,
        beta: float = 0.4
    ) -> Tuple[Dict[str, np.ndarray], np.ndarray, np.ndarray]:
        if len(self.buffer) == self.capacity:
            priorities = self.priorities
        else:
            priorities = self.priorities[:len(self.buffer)]
            
        probs = priorities ** self.alpha
        probs /= probs.sum()
        
        indices = np.random.choice(
            len(self.buffer),
            batch_size,
            p=probs
        )
        
        samples = [self.buffer[idx] for idx in indices]
        weights = (len(self.buffer) * probs[indices]) ** (-beta)
        weights /= weights.max()
        
        batch = {
            'states': np.stack([s[0] for s in samples]),
            'actions': np.stack([s[1] for s in samples]),
            'rewards': np.stack([s[2] for s in samples]),
            'next_states': np.stack([s[3] for s in samples]),
            'dones': np.stack([s[4] for s in samples])
        }
        
        return batch, indices, weights

Usage Example

# Initialize training system
config = {
    'policy_config': {
        'state_dim': 64,
        'action_dim': 6,
        'encoder_dims': [256, 256]
    },
    'training_config': {
        'num_workers': 8,
        'rollout_length': 2048,
        'learning_rate': 3e-4,
        'clip_range': 0.2,
        'value_coef': 0.5,
        'entropy_coef': 0.01
    },
    'env_config': {
        'env_id': 'HalfCheetah-v2',
        'num_envs': 16
    }
}

trainer = DistributedTrainer(config)

# Train the agent
metrics = await trainer.train(num_iterations=1000)

# Evaluate and save results
evaluator = PolicyEvaluator(config)
results = await evaluator.evaluate(trainer.learner)

View Source Code | Documentation | Contributing Guidelines