Robinhood Trading Bot
Building a Robinhood trading bot in Python involves using the Robinhood API to programmatically access your brokerage account...
Technical Implementation Guide
This guide outlines the development of a robust automated trading system using Robinhood’s API. The implementation focuses on risk management, technical analysis, and system reliability.
Source Code: Find the complete implementation at RobinhoodTradingBot
Prerequisites
-
Development Environment
- Python 3.8+
- robin_stocks library
- pandas_ta for technical analysis
- numpy for numerical computations
- pandas for data manipulation
-
Account Requirements
- Robinhood account with API access
- Two-factor authentication enabled
- Trading permissions configured
Installation Steps
# Create virtual environment
python -m venv venv
source venv/bin/activate # Unix
.\venv\Scripts\activate # Windows
# Install dependencies
pip install robin_stocks pandas numpy pandas_ta
Core Components Implementation
- Authentication Setup
import robin_stocks.robinhood as rh
def initialize_client(username: str, password: str) -> None:
try:
rh.login(
username=username,
password=password,
expiresIn=86400,
by_sms=True
)
except Exception as e:
raise Exception(f"Authentication failed: {str(e)}")
- Risk Management
class RiskManager:
def __init__(self, max_position_size: float, max_daily_loss: float):
self.max_position_size = max_position_size
self.max_daily_loss = max_daily_loss
self.daily_pl = 0.0
def validate_trade(self, symbol: str, quantity: int, price: float) -> bool:
position_value = quantity * price
return (position_value <= self.max_position_size and
self.daily_pl - position_value > -self.max_daily_loss)
- Market Data Collection
def get_market_data(symbol: str, interval: str = '5minute', span: str = 'day') -> dict:
try:
historicals = rh.stocks.get_stock_historicals(
symbol,
interval=interval,
span=span
)
return historicals
except Exception as e:
logger.error(f"Failed to fetch market data: {str(e)}")
return None
Trading Strategy Implementation
class TradingStrategy:
def __init__(self, symbols: List[str], indicators: Dict[str, Dict]):
self.symbols = symbols
self.indicators = indicators
def generate_signals(self, data: pd.DataFrame) -> Dict[str, str]:
signals = {}
for symbol in self.symbols:
if self._check_buy_conditions(data, symbol):
signals[symbol] = 'BUY'
elif self._check_sell_conditions(data, symbol):
signals[symbol] = 'SELL'
return signals
Risk Management Guidelines
-
Position Sizing Rules
- Maximum 2% risk per trade
- Scale positions based on volatility
- Account for market liquidity
-
Stop Loss Implementation
- Set hard stop losses
- Implement trailing stops
- Use volatility-based stops (ATR)
Monitoring System
class TradingMonitor:
def __init__(self):
self.trades = []
self.performance_metrics = {}
def log_trade(self, trade: Dict[str, Any]):
self.trades.append(trade)
self._update_metrics()
def generate_report(self) -> Dict[str, float]:
return {
'total_trades': len(self.trades),
'win_rate': self._calculate_win_rate(),
'profit_factor': self._calculate_profit_factor()
}
Important Notes
-
API Rate Limits
- Maximum 1 request per second
- Implement exponential backoff
- Cache frequently used data
-
Risk Warnings
- Test thoroughly in paper trading
- Start with small position sizes
- Monitor system continuously
- Keep detailed trading logs
Error Handling
def safe_execute_order(symbol: str, quantity: int, side: str) -> Dict[str, Any]:
try:
if side == 'BUY':
order = rh.orders.order_buy_market(symbol, quantity)
else:
order = rh.orders.order_sell_market(symbol, quantity)
return order
except Exception as e:
logger.error(f"Order execution failed: {str(e)}")
return None
For detailed implementation and updates, visit the GitHub Repository.