import HeaderLink from './HeaderLink.astro';

Robinhood Trading Bot

Building a Robinhood trading bot in Python involves using the Robinhood API to programmatically access your brokerage account...

Technical Implementation Guide

This guide outlines the development of a robust automated trading system using Robinhood’s API. The implementation focuses on risk management, technical analysis, and system reliability.

Source Code: Find the complete implementation at RobinhoodTradingBot

Prerequisites

  1. Development Environment

    • Python 3.8+
    • robin_stocks library
    • pandas_ta for technical analysis
    • numpy for numerical computations
    • pandas for data manipulation
  2. Account Requirements

    • Robinhood account with API access
    • Two-factor authentication enabled
    • Trading permissions configured

Installation Steps

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Unix
.\venv\Scripts\activate   # Windows

# Install dependencies
pip install robin_stocks pandas numpy pandas_ta

Core Components Implementation

  1. Authentication Setup
import robin_stocks.robinhood as rh

def initialize_client(username: str, password: str) -> None:
    try:
        rh.login(
            username=username,
            password=password,
            expiresIn=86400,
            by_sms=True
        )
    except Exception as e:
        raise Exception(f"Authentication failed: {str(e)}")
  1. Risk Management
class RiskManager:
    def __init__(self, max_position_size: float, max_daily_loss: float):
        self.max_position_size = max_position_size
        self.max_daily_loss = max_daily_loss
        self.daily_pl = 0.0
    
    def validate_trade(self, symbol: str, quantity: int, price: float) -> bool:
        position_value = quantity * price
        return (position_value <= self.max_position_size and 
                self.daily_pl - position_value > -self.max_daily_loss)
  1. Market Data Collection
def get_market_data(symbol: str, interval: str = '5minute', span: str = 'day') -> dict:
    try:
        historicals = rh.stocks.get_stock_historicals(
            symbol,
            interval=interval,
            span=span
        )
        return historicals
    except Exception as e:
        logger.error(f"Failed to fetch market data: {str(e)}")
        return None

Trading Strategy Implementation

class TradingStrategy:
    def __init__(self, symbols: List[str], indicators: Dict[str, Dict]):
        self.symbols = symbols
        self.indicators = indicators
    
    def generate_signals(self, data: pd.DataFrame) -> Dict[str, str]:
        signals = {}
        for symbol in self.symbols:
            if self._check_buy_conditions(data, symbol):
                signals[symbol] = 'BUY'
            elif self._check_sell_conditions(data, symbol):
                signals[symbol] = 'SELL'
        return signals

Risk Management Guidelines

  1. Position Sizing Rules

    • Maximum 2% risk per trade
    • Scale positions based on volatility
    • Account for market liquidity
  2. Stop Loss Implementation

    • Set hard stop losses
    • Implement trailing stops
    • Use volatility-based stops (ATR)

Monitoring System

class TradingMonitor:
    def __init__(self):
        self.trades = []
        self.performance_metrics = {}
    
    def log_trade(self, trade: Dict[str, Any]):
        self.trades.append(trade)
        self._update_metrics()
    
    def generate_report(self) -> Dict[str, float]:
        return {
            'total_trades': len(self.trades),
            'win_rate': self._calculate_win_rate(),
            'profit_factor': self._calculate_profit_factor()
        }

Important Notes

  1. API Rate Limits

    • Maximum 1 request per second
    • Implement exponential backoff
    • Cache frequently used data
  2. Risk Warnings

    • Test thoroughly in paper trading
    • Start with small position sizes
    • Monitor system continuously
    • Keep detailed trading logs

Error Handling

def safe_execute_order(symbol: str, quantity: int, side: str) -> Dict[str, Any]:
    try:
        if side == 'BUY':
            order = rh.orders.order_buy_market(symbol, quantity)
        else:
            order = rh.orders.order_sell_market(symbol, quantity)
        return order
    except Exception as e:
        logger.error(f"Order execution failed: {str(e)}")
        return None

For detailed implementation and updates, visit the GitHub Repository.