import HeaderLink from './HeaderLink.astro';

Advanced Sentiment Analysis Pipeline

Enterprise-grade sentiment analysis system implementing transformer models, aspect-based analysis, and multilingual support for natural language processing

System Architecture

A comprehensive sentiment analysis system that combines multiple analysis approaches with real-time processing and contextual understanding.

Core Components

1. Text Processing Pipeline

class SentimentProcessor:
    def __init__(self, config: Dict[str, Any]):
        self.tokenizer = AutoTokenizer.from_pretrained(
            config['model_name']
        )
        self.preprocessor = TextPreprocessor(config['preprocess_config'])
        self.language_detector = LanguageDetector(
            config['language_config']
        )
        
    async def process_text(
        self,
        texts: List[str]
    ) -> ProcessedText:
        # Detect languages
        languages = await self.language_detector.detect_batch(texts)
        
        # Group by language
        language_groups = defaultdict(list)
        for text, lang in zip(texts, languages):
            language_groups[lang].append(text)
            
        # Process each language group
        processed_groups = await asyncio.gather(*[
            self._process_language_group(lang, texts)
            for lang, texts in language_groups.items()
        ])
        
        # Combine results
        return self._merge_processed_groups(processed_groups)
        
    async def _process_language_group(
        self,
        language: str,
        texts: List[str]
    ) -> ProcessedGroup:
        # Preprocess texts
        cleaned_texts = await self.preprocessor.preprocess_batch(
            texts,
            language
        )
        
        # Tokenize
        encodings = self.tokenizer(
            cleaned_texts,
            padding=True,
            truncation=True,
            max_length=512,
            return_tensors='pt'
        )
        
        return ProcessedGroup(
            language=language,
            input_ids=encodings['input_ids'],
            attention_mask=encodings['attention_mask']
        )

2. Sentiment Analysis Models

class SentimentAnalyzer:
    def __init__(self, config: Dict[str, Any]):
        self.models = {
            lang: self._load_model(lang, config)
            for lang in config['languages']
        }
        self.aspect_extractor = AspectExtractor(
            config['aspect_config']
        )
        self.emotion_detector = EmotionDetector(
            config['emotion_config']
        )
        
    async def analyze_sentiment(
        self,
        processed_text: ProcessedText
    ) -> SentimentResults:
        # Analyze each language group
        results = await asyncio.gather(*[
            self._analyze_language_group(
                group,
                self.models[group.language]
            )
            for group in processed_text.groups
        ])
        
        # Extract aspects
        aspects = await self.aspect_extractor.extract(
            processed_text
        )
        
        # Detect emotions
        emotions = await self.emotion_detector.detect(
            processed_text
        )
        
        return SentimentResults(
            sentiments=self._merge_results(results),
            aspects=aspects,
            emotions=emotions
        )

class AspectExtractor:
    def __init__(self, config: Dict[str, Any]):
        self.model = AspectExtractionModel(
            config['model_config']
        )
        self.aspect_categories = config['categories']
        
    async def extract(
        self,
        text: ProcessedText
    ) -> List[AspectSentiment]:
        # Extract aspect mentions
        aspects = await self.model.extract_aspects(text)
        
        # Classify aspect sentiments
        sentiments = await self.model.classify_aspects(
            text,
            aspects
        )
        
        return [
            AspectSentiment(aspect, sentiment)
            for aspect, sentiment in zip(aspects, sentiments)
        ]

3. Contextual Analysis

class ContextAnalyzer:
    def __init__(self, config: Dict[str, Any]):
        self.entity_recognizer = EntityRecognizer(
            config['entity_config']
        )
        self.context_embedder = ContextEmbedder(
            config['embedding_config']
        )
        self.sarcasm_detector = SarcasmDetector(
            config['sarcasm_config']
        )
        
    async def analyze_context(
        self,
        text: ProcessedText,
        sentiment_results: SentimentResults
    ) -> ContextualAnalysis:
        # Extract entities
        entities = await self.entity_recognizer.extract(text)
        
        # Generate contextual embeddings
        context_embeddings = await self.context_embedder.embed(
            text,
            entities
        )
        
        # Detect sarcasm
        sarcasm_scores = await self.sarcasm_detector.detect(
            text,
            context_embeddings
        )
        
        # Adjust sentiment based on context
        adjusted_sentiments = self._adjust_sentiments(
            sentiment_results,
            sarcasm_scores,
            context_embeddings
        )
        
        return ContextualAnalysis(
            adjusted_sentiments=adjusted_sentiments,
            entities=entities,
            context_embeddings=context_embeddings
        )

4. Sentiment Aggregation

class SentimentAggregator:
    def __init__(self, config: Dict[str, Any]):
        self.time_aggregator = TimeBasedAggregator(
            config['time_config']
        )
        self.topic_aggregator = TopicAggregator(
            config['topic_config']
        )
        self.trend_analyzer = TrendAnalyzer(
            config['trend_config']
        )
        
    async def aggregate_sentiments(
        self,
        results: List[SentimentResults],
        metadata: Dict[str, Any]
    ) -> AggregatedSentiments:
        # Aggregate by time
        time_aggregation = await self.time_aggregator.aggregate(
            results,
            metadata['timestamps']
        )
        
        # Aggregate by topic
        topic_aggregation = await self.topic_aggregator.aggregate(
            results,
            metadata['topics']
        )
        
        # Analyze trends
        trends = await self.trend_analyzer.analyze(
            time_aggregation,
            topic_aggregation
        )
        
        return AggregatedSentiments(
            time_series=time_aggregation,
            topic_distribution=topic_aggregation,
            trends=trends
        )

Usage Example

# Initialize sentiment analysis system
config = {
    'model_config': {
        'model_name': 'xlm-roberta-large',
        'languages': ['en', 'es', 'fr', 'de'],
        'aspect_categories': [
            'price', 'quality', 'service', 'location'
        ]
    },
    'analysis_config': {
        'context_window': 5,
        'min_aspect_confidence': 0.7,
        'emotion_threshold': 0.6
    }
}

sentiment_analyzer = SentimentAnalysis(config)

# Analyze texts
texts = [
    "The product quality is excellent but the price is too high!",
    "Le service client est vraiment exceptionnel.",
    "Die Lieferung war leider sehr spät."
]

results = await sentiment_analyzer.analyze_texts(texts)

# Aggregate results
aggregated = await sentiment_analyzer.aggregate_results(
    results,
    metadata={
        'timestamps': [...],
        'topics': [...]
    }
)

# Generate insights
insights = await sentiment_analyzer.generate_insights(aggregated)

View Source Code | Documentation | Contributing Guidelines