import HeaderLink from './HeaderLink.astro';

Advanced Text Classification Pipeline

Enterprise-grade text classification system implementing transformer models, multi-task learning, and automated model training for natural language processing

System Architecture

A comprehensive text classification system that combines state-of-the-art language models with automated training and deployment pipelines.

Core Components

1. Text Processing Pipeline

class TextProcessor:
    def __init__(self, config: Dict[str, Any]):
        self.tokenizer = AutoTokenizer.from_pretrained(
            config['model_name']
        )
        self.cleaner = TextCleaner(config['cleaning_config'])
        self.augmenter = TextAugmenter(config['augmentation_config'])
        
    async def process_text(
        self,
        texts: List[str],
        augment: bool = False
    ) -> ProcessedText:
        # Clean texts
        cleaned_texts = await self.cleaner.clean_batch(texts)
        
        # Augment if requested
        if augment:
            augmented_texts = await self.augmenter.augment_batch(
                cleaned_texts
            )
            cleaned_texts.extend(augmented_texts)
        
        # Tokenize
        encodings = self.tokenizer(
            cleaned_texts,
            padding=True,
            truncation=True,
            max_length=512,
            return_tensors='pt'
        )
        
        return ProcessedText(
            input_ids=encodings['input_ids'],
            attention_mask=encodings['attention_mask'],
            original_texts=texts
        )

class TextCleaner:
    def __init__(self, config: Dict[str, Any]):
        self.processors = [
            URLProcessor(),
            EmailProcessor(),
            HTMLProcessor(),
            SpecialCharsProcessor(),
            WhitespaceProcessor()
        ]
        self.language_detector = LanguageDetector()
        
    async def clean_batch(
        self,
        texts: List[str]
    ) -> List[str]:
        cleaned_texts = []
        
        for text in texts:
            # Detect language
            lang = self.language_detector.detect(text)
            
            # Apply processors sequentially
            cleaned_text = text
            for processor in self.processors:
                cleaned_text = await processor.process(
                    cleaned_text,
                    lang
                )
                
            cleaned_texts.append(cleaned_text)
            
        return cleaned_texts

2. Model Architecture

class TextClassifier(nn.Module):
    def __init__(self, config: Dict[str, Any]):
        super().__init__()
        self.encoder = AutoModel.from_pretrained(
            config['model_name']
        )
        self.dropout = nn.Dropout(config['dropout_rate'])
        self.classifiers = nn.ModuleDict({
            task: self._build_classifier(
                config['hidden_size'],
                num_classes
            )
            for task, num_classes in config['tasks'].items()
        })
        
    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        task: str
    ) -> torch.Tensor:
        # Get encoder outputs
        outputs = self.encoder(
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        
        # Pool and classify
        pooled = self._pool_outputs(outputs, attention_mask)
        pooled = self.dropout(pooled)
        
        return self.classifiers[task](pooled)
        
    def _build_classifier(
        self,
        hidden_size: int,
        num_classes: int
    ) -> nn.Module:
        return nn.Sequential(
            nn.Linear(hidden_size, hidden_size // 2),
            nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(hidden_size // 2, num_classes)
        )

3. Training Pipeline

class TrainingPipeline:
    def __init__(self, config: Dict[str, Any]):
        self.model = TextClassifier(config['model_config'])
        self.optimizer = self._setup_optimizer(config['optimizer_config'])
        self.scheduler = self._setup_scheduler(config['scheduler_config'])
        self.trainer = Trainer(config['trainer_config'])
        
    async def train(
        self,
        train_data: Dataset,
        val_data: Dataset
    ) -> TrainingResults:
        # Setup training
        train_loader = self._create_dataloader(
            train_data,
            shuffle=True
        )
        val_loader = self._create_dataloader(
            val_data,
            shuffle=False
        )
        
        # Train model
        results = await self.trainer.train(
            model=self.model,
            train_loader=train_loader,
            val_loader=val_loader,
            optimizer=self.optimizer,
            scheduler=self.scheduler
        )
        
        return results

class Trainer:
    def __init__(self, config: Dict[str, Any]):
        self.device = torch.device(config['device'])
        self.num_epochs = config['num_epochs']
        self.metrics = MetricsCalculator(config['metrics'])
        self.early_stopping = EarlyStopping(config['patience'])
        
    async def train(
        self,
        model: nn.Module,
        train_loader: DataLoader,
        val_loader: DataLoader,
        optimizer: Optimizer,
        scheduler: LRScheduler
    ) -> TrainingResults:
        model = model.to(self.device)
        best_model = None
        best_score = float('-inf')
        
        for epoch in range(self.num_epochs):
            # Training phase
            train_metrics = await self._train_epoch(
                model,
                train_loader,
                optimizer
            )
            
            # Validation phase
            val_metrics = await self._validate_epoch(
                model,
                val_loader
            )
            
            # Update scheduler
            scheduler.step(val_metrics['val_loss'])
            
            # Check for improvement
            if val_metrics['val_score'] > best_score:
                best_score = val_metrics['val_score']
                best_model = copy.deepcopy(model)
                
            # Early stopping check
            if self.early_stopping.should_stop(val_metrics['val_loss']):
                break
                
        return TrainingResults(
            model=best_model,
            metrics=val_metrics
        )

4. Inference Pipeline

class InferencePipeline:
    def __init__(self, config: Dict[str, Any]):
        self.processor = TextProcessor(config['processor_config'])
        self.model = self._load_model(config['model_path'])
        self.cache = PredictionCache(config['cache_config'])
        
    async def classify(
        self,
        texts: List[str],
        tasks: List[str]
    ) -> Dict[str, List[Prediction]]:
        # Check cache
        cache_hits, texts_to_process = await self.cache.get_predictions(
            texts
        )
        
        if texts_to_process:
            # Process new texts
            processed = await self.processor.process_text(
                texts_to_process
            )
            
            # Get predictions
            predictions = {}
            for task in tasks:
                task_preds = await self._get_predictions(
                    processed,
                    task
                )
                predictions[task] = task_preds
                
            # Update cache
            await self.cache.store_predictions(
                texts_to_process,
                predictions
            )
            
            # Merge with cache hits
            predictions = self._merge_predictions(
                cache_hits,
                predictions
            )
            
        return predictions

Usage Example

# Initialize classification system
config = {
    'model_config': {
        'model_name': 'bert-base-uncased',
        'tasks': {
            'sentiment': 3,
            'topic': 10,
            'intent': 5
        }
    },
    'training_config': {
        'batch_size': 32,
        'learning_rate': 2e-5,
        'num_epochs': 10
    }
}

classifier = TextClassificationSystem(config)

# Train model
training_results = await classifier.train(train_data, val_data)

# Make predictions
texts = [
    "The product quality is excellent!",
    "How do I reset my password?",
    "Looking for technical documentation"
]

predictions = await classifier.classify(
    texts=texts,
    tasks=['sentiment', 'intent']
)

View Source Code | Documentation | Contributing Guidelines