import HeaderLink from './HeaderLink.astro';

Advanced Time Series Anomaly Detection

Enterprise-grade anomaly detection system implementing deep learning, statistical methods, and real-time monitoring for time series data

System Architecture

A comprehensive time series anomaly detection system that combines multiple detection strategies with real-time processing and automated response capabilities.

Core Components

1. Time Series Preprocessor

class TimeSeriesPreprocessor:
    def __init__(self, config: Dict[str, Any]):
        self.scaler = RobustScaler()
        self.imputer = KNNImputer(n_neighbors=5)
        self.decomposer = TimeSeriesDecomposer(
            config['decomposition_config']
        )
        self.feature_extractor = TSFeatureExtractor(
            config['feature_config']
        )
        
    async def preprocess(
        self,
        data: pd.DataFrame
    ) -> ProcessedTimeSeries:
        # Handle missing values
        imputed_data = await self._handle_missing_values(data)
        
        # Decompose time series
        decomposition = await self.decomposer.decompose(imputed_data)
        
        # Extract features
        features = await self.feature_extractor.extract_features(
            imputed_data,
            decomposition
        )
        
        # Scale data
        scaled_data = self.scaler.fit_transform(imputed_data)
        
        return ProcessedTimeSeries(
            data=scaled_data,
            features=features,
            decomposition=decomposition
        )

class TimeSeriesDecomposer:
    def __init__(self, config: Dict[str, Any]):
        self.methods = {
            'stl': self._stl_decomposition,
            'seasonal': self._seasonal_decomposition,
            'wavelet': self._wavelet_decomposition
        }
        self.selected_method = config['method']
        
    async def decompose(
        self,
        data: pd.DataFrame
    ) -> Dict[str, np.ndarray]:
        decomposition_func = self.methods[self.selected_method]
        return await decomposition_func(data)

2. Anomaly Detection Models

class AnomalyDetector:
    def __init__(self, config: Dict[str, Any]):
        self.models = {
            'deep': DeepAnomalyDetector(config['deep_config']),
            'statistical': StatisticalDetector(config['stat_config']),
            'isolation': IsolationForestDetector(config['if_config'])
        }
        self.ensemble = AnomalyEnsemble(config['ensemble_config'])
        
    async def detect_anomalies(
        self,
        data: ProcessedTimeSeries
    ) -> AnomalyResults:
        # Get predictions from all models
        predictions = {}
        for name, model in self.models.items():
            predictions[name] = await model.predict(data)
            
        # Combine predictions using ensemble
        ensemble_scores = await self.ensemble.combine_predictions(
            predictions,
            data.features
        )
        
        return AnomalyResults(
            scores=ensemble_scores,
            individual_predictions=predictions,
            threshold=self.ensemble.get_threshold(ensemble_scores)
        )

class DeepAnomalyDetector:
    def __init__(self, config: Dict[str, Any]):
        self.model = TransformerAE(
            input_dim=config['input_dim'],
            hidden_dim=config['hidden_dim'],
            num_layers=config['num_layers']
        )
        self.threshold_estimator = AdaptiveThreshold(
            config['threshold_config']
        )
        
    async def predict(
        self,
        data: ProcessedTimeSeries
    ) -> np.ndarray:
        # Generate reconstructions
        reconstructions = self.model(data.data)
        
        # Compute reconstruction errors
        errors = torch.mean(
            torch.square(data.data - reconstructions),
            dim=1
        )
        
        # Estimate threshold
        threshold = self.threshold_estimator.estimate(errors)
        
        return {
            'scores': errors.numpy(),
            'threshold': threshold
        }

3. Real-time Monitoring

class AnomalyMonitor:
    def __init__(self, config: Dict[str, Any]):
        self.detector = AnomalyDetector(config['detector_config'])
        self.alert_manager = AlertManager(config['alert_config'])
        self.stream_processor = StreamProcessor(
            config['stream_config']
        )
        
    async def monitor_stream(
        self,
        data_stream: AsyncIterator[pd.DataFrame]
    ) -> AsyncIterator[MonitoringResult]:
        async for batch in self.stream_processor.process(data_stream):
            # Preprocess batch
            processed_batch = await self.preprocessor.preprocess(batch)
            
            # Detect anomalies
            anomalies = await self.detector.detect_anomalies(
                processed_batch
            )
            
            # Handle alerts
            if anomalies.has_anomalies():
                await self.alert_manager.handle_anomalies(
                    anomalies,
                    batch
                )
                
            yield MonitoringResult(
                timestamp=batch.index[-1],
                anomalies=anomalies,
                metrics=self._compute_metrics(anomalies)
            )

class StreamProcessor:
    def __init__(self, config: Dict[str, Any]):
        self.window_size = config['window_size']
        self.stride = config['stride']
        self.buffer = TimeSeriesBuffer(
            max_size=config['buffer_size']
        )
        
    async def process(
        self,
        data_stream: AsyncIterator[pd.DataFrame]
    ) -> AsyncIterator[pd.DataFrame]:
        async for data in data_stream:
            # Update buffer
            await self.buffer.add(data)
            
            # Generate windows
            if self.buffer.is_ready():
                windows = self.buffer.get_windows(
                    self.window_size,
                    self.stride
                )
                for window in windows:
                    yield window

4. Anomaly Analysis

class AnomalyAnalyzer:
    def __init__(self, config: Dict[str, Any]):
        self.root_cause_analyzer = RootCauseAnalyzer(
            config['root_cause_config']
        )
        self.pattern_detector = PatternDetector(
            config['pattern_config']
        )
        self.impact_analyzer = ImpactAnalyzer(
            config['impact_config']
        )
        
    async def analyze_anomalies(
        self,
        anomalies: AnomalyResults,
        data: ProcessedTimeSeries
    ) -> AnomalyAnalysis:
        # Analyze root causes
        root_causes = await self.root_cause_analyzer.analyze(
            anomalies,
            data
        )
        
        # Detect patterns
        patterns = await self.pattern_detector.detect_patterns(
            anomalies,
            data
        )
        
        # Analyze impact
        impact = await self.impact_analyzer.analyze_impact(
            anomalies,
            data
        )
        
        return AnomalyAnalysis(
            root_causes=root_causes,
            patterns=patterns,
            impact=impact
        )

Usage Example

# Initialize anomaly detection system
config = {
    'preprocessing_config': {
        'decomposition_config': {
            'method': 'stl',
            'period': 24
        },
        'feature_config': {
            'window_sizes': [12, 24, 48]
        }
    },
    'detector_config': {
        'deep_config': {
            'input_dim': 24,
            'hidden_dim': 64,
            'num_layers': 3
        },
        'ensemble_config': {
            'weights': [0.4, 0.3, 0.3]
        }
    }
}

anomaly_detector = TimeSeriesAnomalyDetection(config)

# Start monitoring
async for result in anomaly_detector.monitor_stream(data_stream):
    if result.anomalies.has_critical():
        analysis = await anomaly_detector.analyze_anomalies(
            result.anomalies,
            result.data
        )
        await handle_critical_anomalies(analysis)

View Source Code | Documentation | Contributing Guidelines