Advanced Demand Forecasting System
Enterprise-grade demand forecasting platform implementing deep learning, probabilistic modeling, and automated forecast generation for supply chain optimization
System Architecture
A comprehensive demand forecasting system that combines multiple forecasting methods with hierarchical reconciliation and automated model selection.
Core Components
1. Data Pipeline
class ForecastDataPipeline:
def __init__(self, config: Dict[str, Any]):
self.feature_generator = FeatureGenerator(
config['feature_config']
)
self.preprocessor = TimeSeriesPreprocessor(
config['preprocessing_config']
)
self.validator = DataValidator(config['validation_config'])
async def prepare_forecast_data(
self,
raw_data: pd.DataFrame
) -> ForecastData:
# Validate input data
await self.validator.validate_data(raw_data)
# Generate features
features = await self.feature_generator.generate_features(
raw_data
)
# Preprocess time series
processed_data = await self.preprocessor.process(
raw_data,
features
)
return ForecastData(
time_series=processed_data['series'],
features=processed_data['features'],
metadata=processed_data['metadata']
)
class FeatureGenerator:
def __init__(self, config: Dict[str, Any]):
self.calendar_processor = CalendarProcessor(
config['calendar_config']
)
self.event_processor = EventProcessor(config['event_config'])
self.lag_generator = LagFeatureGenerator(config['lag_config'])
async def generate_features(
self,
data: pd.DataFrame
) -> pd.DataFrame:
features = {}
# Generate different types of features in parallel
feature_tasks = [
self.calendar_processor.process(data),
self.event_processor.process(data),
self.lag_generator.generate(data)
]
results = await asyncio.gather(*feature_tasks)
# Combine all features
for result in results:
features.update(result)
return pd.DataFrame(features)
2. Forecasting Models
class ForecastingEngine:
def __init__(self, config: Dict[str, Any]):
self.models = {
'deepar': DeepARModel(config['deepar_config']),
'prophet': ProphetModel(config['prophet_config']),
'lstm': HierarchicalLSTM(config['lstm_config']),
'statistical': StatisticalModels(config['stat_config'])
}
self.model_selector = ModelSelector(config['selection_config'])
self.reconciler = HierarchicalReconciliation(
config['reconciliation_config']
)
async def generate_forecast(
self,
data: ForecastData,
horizon: int
) -> ForecastResult:
# Select best model for each series
model_assignments = await self.model_selector.select_models(
data,
self.models
)
# Generate forecasts using assigned models
forecasts = {}
for series_id, model_name in model_assignments.items():
model = self.models[model_name]
forecasts[series_id] = await model.forecast(
data.get_series(series_id),
horizon
)
# Reconcile hierarchical forecasts
reconciled_forecasts = await self.reconciler.reconcile(
forecasts,
data.hierarchy
)
return ForecastResult(
point_forecasts=reconciled_forecasts['point'],
intervals=reconciled_forecasts['intervals'],
metrics=self._compute_metrics(reconciled_forecasts)
)
class DeepARModel:
def __init__(self, config: Dict[str, Any]):
self.network = DeepARNetwork(
input_size=config['input_size'],
hidden_size=config['hidden_size'],
num_layers=config['num_layers']
)
self.trainer = LightningTrainer(config['trainer_config'])
async def forecast(
self,
series: pd.Series,
horizon: int
) -> Dict[str, np.ndarray]:
# Prepare data for DeepAR
dataset = self._prepare_data(series)
# Generate samples from the model
samples = await self._generate_samples(
dataset,
horizon,
num_samples=100
)
return {
'mean': np.mean(samples, axis=0),
'lower': np.percentile(samples, 10, axis=0),
'upper': np.percentile(samples, 90, axis=0)
}
3. Uncertainty Quantification
class UncertaintyEstimator:
def __init__(self, config: Dict[str, Any]):
self.distribution_fitter = DistributionFitter(
config['distribution_config']
)
self.interval_calculator = PredictionIntervalCalculator(
config['interval_config']
)
async def estimate_uncertainty(
self,
forecasts: np.ndarray,
history: pd.Series
) -> Dict[str, np.ndarray]:
# Fit error distribution
error_dist = await self.distribution_fitter.fit(
history,
forecasts
)
# Calculate prediction intervals
intervals = await self.interval_calculator.calculate(
forecasts,
error_dist,
confidence_levels=[0.5, 0.8, 0.95]
)
return {
'distributions': error_dist,
'intervals': intervals
}
class DistributionFitter:
def __init__(self, config: Dict[str, Any]):
self.distributions = [
'normal',
'student_t',
'skewed_t'
]
self.selection_criterion = config['criterion']
async def fit(
self,
history: pd.Series,
forecasts: np.ndarray
) -> Distribution:
# Compute forecast errors
errors = self._compute_errors(history, forecasts)
# Fit multiple distributions
fitted_dists = await asyncio.gather(*[
self._fit_distribution(errors, dist_name)
for dist_name in self.distributions
])
# Select best fitting distribution
return self._select_best_distribution(fitted_dists)
4. Forecast Monitoring
class ForecastMonitor:
def __init__(self, config: Dict[str, Any]):
self.metrics_calculator = ForecastMetrics(
config['metrics_config']
)
self.anomaly_detector = ForecastAnomalyDetector(
config['anomaly_config']
)
self.alert_manager = AlertManager(config['alert_config'])
async def monitor_forecasts(
self,
forecasts: ForecastResult,
actuals: pd.Series
) -> MonitoringReport:
# Calculate forecast accuracy metrics
metrics = await self.metrics_calculator.calculate(
forecasts,
actuals
)
# Detect forecast anomalies
anomalies = await self.anomaly_detector.detect(
forecasts,
actuals
)
if anomalies:
await self.alert_manager.send_alerts(anomalies)
return MonitoringReport(
metrics=metrics,
anomalies=anomalies
)
Usage Example
# Initialize forecasting system
config = {
'data_config': {
'feature_config': {
'calendar_config': {'holidays': True},
'lag_config': {'max_lags': 30}
}
},
'model_config': {
'deepar_config': {
'hidden_size': 128,
'num_layers': 3
},
'reconciliation_config': {
'method': 'mint',
'weights': 'ols'
}
}
}
forecasting_system = DemandForecastingSystem(config)
# Generate forecasts
forecast_data = await forecasting_system.prepare_data(historical_data)
forecasts = await forecasting_system.generate_forecast(
forecast_data,
horizon=30
)
# Monitor forecast accuracy
monitoring_report = await forecasting_system.monitor_forecasts(
forecasts,
actual_values
)