Advanced Fraud Detection System
Enterprise-grade fraud detection platform implementing real-time transaction monitoring, anomaly detection, and machine learning-based fraud prevention
System Architecture
A comprehensive fraud detection system that combines multiple detection strategies with real-time processing and automated response mechanisms.
Core Components
1. Real-time Transaction Monitor
class TransactionMonitor:
def __init__(self, config: Dict[str, Any]):
self.stream_processor = KafkaStreamProcessor(
config['kafka_config']
)
self.feature_extractor = RealTimeFeatureExtractor(
config['feature_config']
)
self.rules_engine = RulesEngine(config['rules_config'])
self.alert_manager = AlertManager(config['alert_config'])
async def process_transaction(
self,
transaction: Transaction
) -> FraudPrediction:
# Extract features in real-time
features = await self.feature_extractor.extract_features(
transaction
)
# Apply rule-based checks
rule_violations = await self.rules_engine.check_rules(
transaction,
features
)
if rule_violations:
await self.alert_manager.send_alert(
transaction,
rule_violations
)
return FraudPrediction(
transaction_id=transaction.id,
risk_score=self._calculate_risk_score(features, rule_violations),
rule_violations=rule_violations
)
class RealTimeFeatureExtractor:
def __init__(self, config: Dict[str, Any]):
self.redis_client = redis.Redis(**config['redis'])
self.feature_calculators = {
'velocity': VelocityFeatures(config['velocity']),
'location': LocationFeatures(config['location']),
'device': DeviceFeatures(config['device']),
'network': NetworkFeatures(config['network'])
}
async def extract_features(
self,
transaction: Transaction
) -> Dict[str, float]:
feature_tasks = [
calculator.calculate(transaction)
for calculator in self.feature_calculators.values()
]
results = await asyncio.gather(*feature_tasks)
return {k: v for d in results for k, v in d.items()}
2. Machine Learning Pipeline
class FraudDetector:
def __init__(self, config: Dict[str, Any]):
self.models = {
'xgboost': self._load_model('xgboost', config['xgb_config']),
'lightgbm': self._load_model('lightgbm', config['lgb_config']),
'neural_net': self._load_model('neural_net', config['nn_config'])
}
self.ensemble = ModelEnsemble(config['ensemble_config'])
self.threshold_optimizer = ThresholdOptimizer(
config['threshold_config']
)
async def predict_fraud(
self,
features: Dict[str, float]
) -> FraudScore:
# Get predictions from all models
predictions = {}
for name, model in self.models.items():
predictions[name] = await model.predict_proba(features)
# Combine predictions using ensemble
ensemble_score = self.ensemble.combine_predictions(predictions)
# Apply optimal threshold
threshold = await self.threshold_optimizer.get_threshold(
features['transaction_amount']
)
return FraudScore(
score=ensemble_score,
is_fraud=ensemble_score > threshold,
model_scores=predictions
)
class ThresholdOptimizer:
def __init__(self, config: Dict[str, Any]):
self.thresholds = defaultdict(float)
self.updater = AsyncThresholdUpdater(
update_interval=config['update_interval']
)
async def get_threshold(
self,
amount: float
) -> float:
amount_bucket = self._get_amount_bucket(amount)
return self.thresholds[amount_bucket]
async def update_thresholds(
self,
recent_transactions: List[Transaction]
) -> None:
# Calculate optimal thresholds using cost-sensitive analysis
new_thresholds = await self._optimize_thresholds(
recent_transactions
)
self.thresholds.update(new_thresholds)
3. Behavioral Analysis
class BehavioralAnalyzer:
def __init__(self, config: Dict[str, Any]):
self.profile_store = UserProfileStore(config['profile_config'])
self.sequence_analyzer = SequenceAnalyzer(
config['sequence_config']
)
self.pattern_detector = PatternDetector(
config['pattern_config']
)
async def analyze_behavior(
self,
user_id: str,
transaction: Transaction
) -> BehaviorScore:
# Get user profile
profile = await self.profile_store.get_profile(user_id)
# Analyze transaction sequence
sequence_score = await self.sequence_analyzer.analyze(
profile.recent_transactions,
transaction
)
# Detect suspicious patterns
pattern_score = await self.pattern_detector.detect_patterns(
profile,
transaction
)
return BehaviorScore(
sequence_score=sequence_score,
pattern_score=pattern_score,
risk_level=self._calculate_risk_level(
sequence_score,
pattern_score
)
)
class SequenceAnalyzer:
def __init__(self, config: Dict[str, Any]):
self.model = TransformerSequenceModel(
config['model_config']
)
self.tokenizer = TransactionTokenizer(
config['tokenizer_config']
)
async def analyze(
self,
history: List[Transaction],
current: Transaction
) -> float:
# Tokenize transaction sequence
sequence = self.tokenizer.tokenize(history + [current])
# Get sequence probability
return await self.model.predict_probability(sequence)
4. Response System
class FraudResponseSystem:
def __init__(self, config: Dict[str, Any]):
self.action_manager = ActionManager(config['action_config'])
self.notification_service = NotificationService(
config['notification_config']
)
self.case_manager = CaseManager(config['case_config'])
async def handle_fraud_detection(
self,
transaction: Transaction,
fraud_score: FraudScore,
behavior_score: BehaviorScore
) -> ResponseAction:
# Determine appropriate action
action = await self.action_manager.determine_action(
transaction,
fraud_score,
behavior_score
)
# Execute action
if action.requires_blocking:
await self.block_transaction(transaction)
if action.requires_notification:
await self.notification_service.notify_stakeholders(
transaction,
action
)
if action.requires_investigation:
await self.case_manager.create_case(
transaction,
fraud_score,
behavior_score
)
return action
Usage Example
# Initialize fraud detection system
config = {
'stream_config': {
'kafka_brokers': ['localhost:9092'],
'topic': 'transactions'
},
'model_config': {
'xgb_config': {'max_depth': 6, 'n_estimators': 1000},
'threshold_config': {'update_interval': 3600}
},
'behavioral_config': {
'sequence_length': 10,
'pattern_window': '24h'
}
}
fraud_system = FraudDetectionSystem(config)
# Process transaction
transaction = Transaction(
id='TXN123',
amount=1000.00,
merchant='SHOP123',
timestamp=datetime.now(),
user_id='USER456',
device_info={'ip': '1.2.3.4', 'device_id': 'DEV789'}
)
# Get fraud prediction
fraud_prediction = await fraud_system.process_transaction(transaction)
if fraud_prediction.is_fraud:
response = await fraud_system.handle_fraud_detection(
transaction,
fraud_prediction
)