Enterprise Knowledge Graph System
Production-grade knowledge graph platform implementing entity extraction, relationship mining, and semantic reasoning for large-scale knowledge representation
System Architecture
A comprehensive knowledge graph system that combines entity extraction, relationship mining, and semantic reasoning capabilities.
Core Components
1. Entity Extraction Pipeline
class EntityExtractor:
def __init__(self, config: Dict[str, Any]):
self.ner_model = TransformerNER(config['ner_config'])
self.entity_linker = EntityLinker(config['linking_config'])
self.type_classifier = EntityTypeClassifier(
config['type_config']
)
self.disambiguator = EntityDisambiguator(
config['disambiguation_config']
)
async def extract_entities(
self,
text: str
) -> List[Entity]:
# Extract entity mentions
mentions = await self.ner_model.extract_mentions(text)
# Link to knowledge base
linked_entities = await self.entity_linker.link_entities(
mentions
)
# Classify entity types
typed_entities = await self.type_classifier.classify(
linked_entities
)
# Disambiguate entities
disambiguated = await self.disambiguator.disambiguate(
typed_entities,
context=text
)
return disambiguated
class EntityLinker:
def __init__(self, config: Dict[str, Any]):
self.kb_index = ElasticsearchIndex(config['kb_config'])
self.candidate_generator = CandidateGenerator(
config['candidate_config']
)
self.ranker = CandidateRanker(config['ranking_config'])
2. Relationship Mining
class RelationshipMiner:
def __init__(self, config: Dict[str, Any]):
self.relation_extractor = RelationExtractor(
config['extraction_config']
)
self.pattern_miner = PatternMiner(config['pattern_config'])
self.schema_aligner = SchemaAligner(
config['schema_config']
)
async def mine_relationships(
self,
entities: List[Entity],
context: str
) -> List[Relationship]:
# Extract relationships from text
extracted_relations = await self.relation_extractor.extract(
entities,
context
)
# Mine patterns
patterns = await self.pattern_miner.mine_patterns(
extracted_relations
)
# Align with schema
aligned_relations = await self.schema_aligner.align(
extracted_relations,
patterns
)
return aligned_relations
class RelationExtractor:
def __init__(self, config: Dict[str, Any]):
self.model = TransformerRelationExtractor(
config['model_name']
)
self.rules = RelationRules(config['rules_config'])
self.validator = RelationValidator(
config['validation_config']
)
3. Graph Construction and Management
class GraphManager:
def __init__(self, config: Dict[str, Any]):
self.graph_store = Neo4jStore(config['store_config'])
self.schema_manager = SchemaManager(
config['schema_config']
)
self.index_manager = GraphIndexManager(
config['index_config']
)
async def update_graph(
self,
entities: List[Entity],
relationships: List[Relationship]
) -> UpdateResult:
# Validate against schema
await self.schema_manager.validate(entities, relationships)
# Create transaction
async with self.graph_store.transaction() as tx:
# Update entities
entity_ops = await self._update_entities(
tx,
entities
)
# Update relationships
relation_ops = await self._update_relationships(
tx,
relationships
)
# Update indexes
await self.index_manager.update_indexes(
tx,
entity_ops,
relation_ops
)
return UpdateResult(
entity_ops=entity_ops,
relation_ops=relation_ops
)
4. Semantic Reasoning Engine
class ReasoningEngine:
def __init__(self, config: Dict[str, Any]):
self.rule_engine = RuleEngine(config['rules_config'])
self.path_finder = SemanticPathFinder(
config['path_config']
)
self.inference_engine = InferenceEngine(
config['inference_config']
)
async def reason(
self,
query: Query,
context: Optional[Dict[str, Any]] = None
) -> ReasoningResult:
# Apply reasoning rules
expanded_query = await self.rule_engine.apply_rules(
query,
context
)
# Find semantic paths
paths = await self.path_finder.find_paths(
expanded_query
)
# Perform inference
inferences = await self.inference_engine.infer(
paths,
context
)
return ReasoningResult(
paths=paths,
inferences=inferences,
confidence_scores=self._compute_confidence(inferences)
)
class InferenceEngine:
def __init__(self, config: Dict[str, Any]):
self.reasoner = LogicReasoner(config['logic_config'])
self.embedder = GraphEmbedder(config['embedding_config'])
self.scorer = ConfidenceScorer(config['scoring_config'])
Usage Example
# Initialize knowledge graph system
config = {
'extraction_config': {
'ner_model': 'bert-large-ner',
'linking_threshold': 0.85,
'max_entities': 100
},
'graph_config': {
'store_url': 'neo4j://localhost:7687',
'schema_file': 'schema.owl',
'index_config': {
'entity_indexes': ['name', 'type'],
'relation_indexes': ['type', 'timestamp']
}
}
}
kg_system = KnowledgeGraphSystem(config)
# Process document
text = """
SpaceX, founded by Elon Musk in 2002, successfully launched the Falcon 9
rocket from Kennedy Space Center. The mission delivered 60 Starlink
satellites to low Earth orbit.
"""
# Extract knowledge
entities = await kg_system.extract_entities(text)
relationships = await kg_system.mine_relationships(entities, text)
# Update knowledge graph
result = await kg_system.update_graph(entities, relationships)
# Perform reasoning
query = Query(
start="SpaceX",
relation="launches",
end="?satellite",
constraints={"time": "2024"}
)
reasoning_result = await kg_system.reason(query)